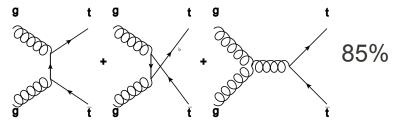
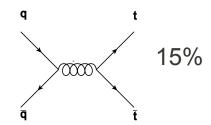


Top Quarks Pairs at LHC

- The LHC serves as a top quark factory
 - $\sigma_{t\bar{t}}(7TeV) = 164.6^{+11.4}_{-15.7} pb$
 - 2011 dataset: ~770 000 top pair events (4.7 fb⁻¹)
 - Production mechanism

- ightharpoonup Decay channels for $t\bar{t} o W^+bW^-\bar{b}$:
 - "all jets"
 - "lepton + jets"
 - "dilepton"


$$WW \rightarrow qqqq$$
 46 %


$$WW \rightarrow l\nu qq$$
 45 %

$$WW \rightarrow l\nu l\nu$$
 9 %

Top Quarks Pairs at LHC

- The LHC serves as a top quark factory
 - $\sigma_{t\bar{t}}(7TeV) = 164.6^{+11.4}_{-15.7} pb$
 - 2011 dataset: ~770 000 top pair events (4.7 fb⁻¹)
 - Production mechanism

- ightharpoonup Decay channels for $t\bar{t} o W^+bW^-\bar{b}$:
 - "all jets"

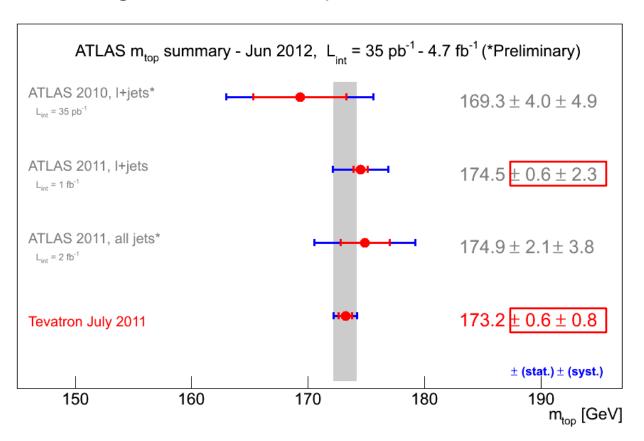
 $WW \rightarrow qqqq$

46 %

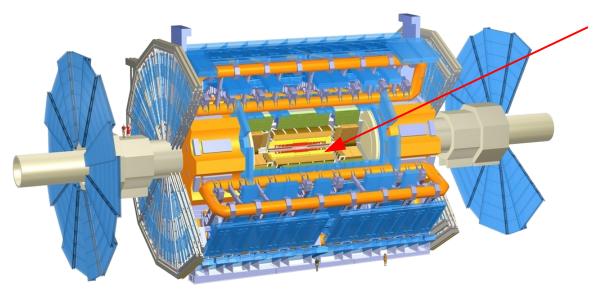
"lepton + jets"

- $WW \rightarrow l\nu qq$
- 45 %

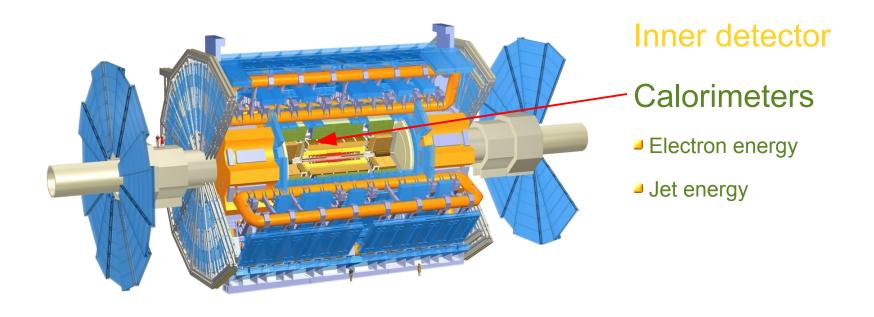
dilepton"


 $WW \rightarrow l\nu l\nu$

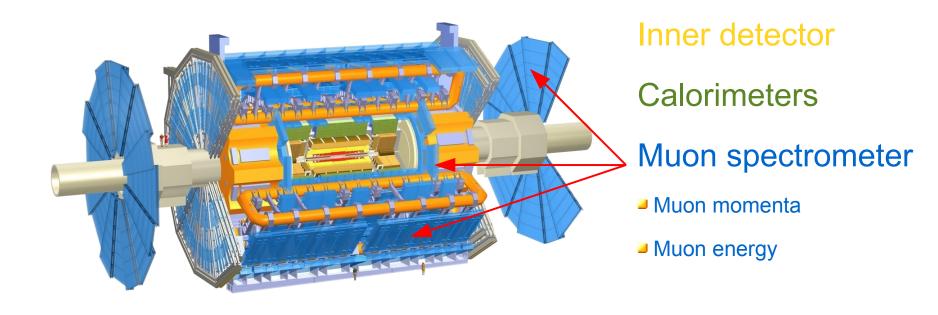
9 %


ATLAS Measurements

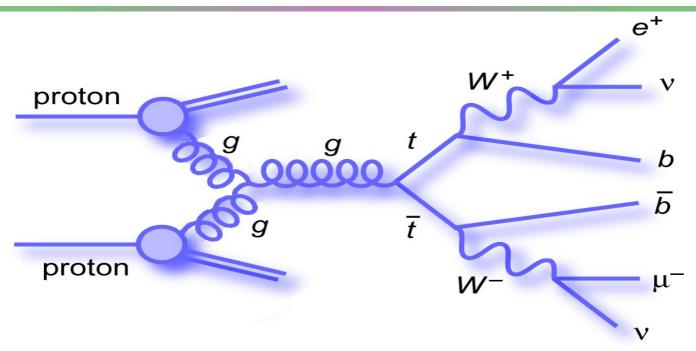
- ATLAS publications: up to now just lepton + jets, all jets
- Growing interest in the dilepton channel


- Multipurpose detector covering almost the full solid angle
- Analyzing pp collisions at LHC: 4.7 fb⁻¹ in 2011

Inner detector


- b-quark identification
- Momenta of electrons and quarks

- Multipurpose detector covering almost the full solid angle
- Analyzing pp collisions at LHC: 4.7 fb⁻¹ in 2011



- Multipurpose detector covering almost the full solid angle
- Analyzing pp collisions at LHC: 4.7 fb⁻¹ in 2011

Selection Cuts

- $ilde{\ eta}$ 2 oppositely charged isolated leptons with high p $_{\scriptscriptstyle au}$ (no $\, au$)
- $\ ^{\square}$ High missing transverse energy E_{T}^{miss} caused by two neutrinos
- 2 jets identified as originating from a b quark
- Additional cuts to reduce background
 - \rightarrow Expected background O(5 %)¹ \rightarrow up to now: signal only analysis

Event Reconstruction

- 6 final four-vectors $(E, \vec{p}) \rightarrow$ 24 parameters
- Available information:
 - 2 x 4 (charged leptons)
 - 2 x 4 (b-quarks from b-jets)
 - $2 \quad (E_T^{miss})$
 - + 2 (neutrino masses)
 - + 2 (W masses)
 - + 1 (equality of t-quark masses)
 - = 23
- Problem: Underconstrained kinematics!

I Investigated the Following Solutions

Scan all possible values for unknown variables:

Neutrino Weighting Method: event weight as estimator

- Scan over trial m_{top} and neutrino z-direction
- Do not fully reconstruct:

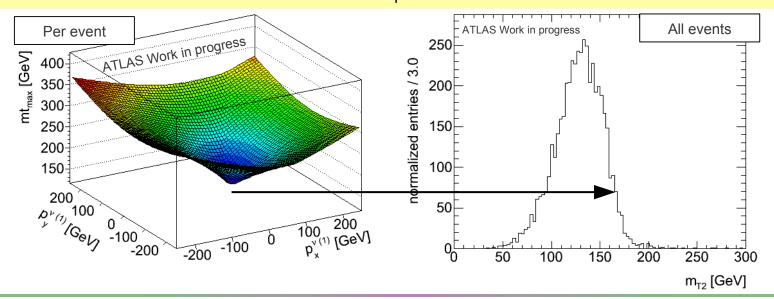
m_{ib} Method: invariant mass of lepton + b-jet system

- A new method: Use unfolded distributions (no detector effects)
- Compare with NLO calculations
- Cooperation with the Theory 2 group at MPP

m_{T2} Method: transverse mass of the t-quark

- Used for decays with 2 invisible products (e.g. SUSY searches¹)
- Scan transverse neutrino momenta $p_x^{
 u(1)}, p_y^{
 u(1)}$.
- In this allows the calculation of m_{T2} observable for every assumption

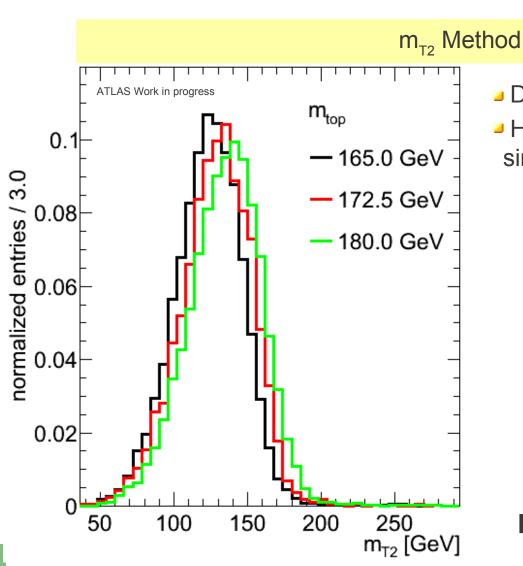
The m_{T2} Method

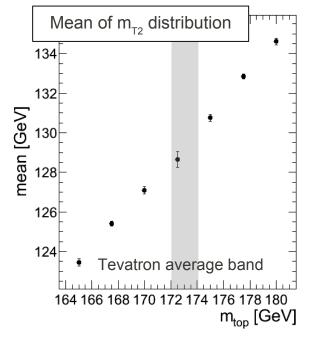

- Scan $p_x^{\nu(1)}, p_y^{\nu(1)}$. $\vec{p}_T^{\nu(2)}$ is then constrained by $\vec{p}_T^{\nu(1)} + \vec{p}_T^{\nu(2)} = E_T^{miss}$
- Definition¹:

$$m_{T2} = \min_{\vec{p}_T^{(1)}, \vec{p}_T^{(2)}} \left[\max \left[m_T^t(m_\nu, \vec{p}_T^{\nu(1)}), m_T^{tbar}(m_\nu, \vec{p}_T^{\nu(2)}) \right] \right]$$

with:

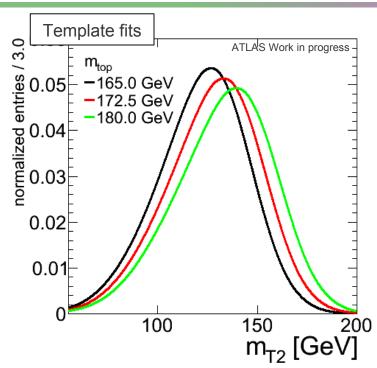
$$m_T(m_{\nu}, \vec{p}_T^{\nu(i)}) = \sqrt{m_{lb}^2 + m_{\nu}^2 + 2(E_T^{lb}E_T^{\nu(i)} - \vec{p}_T^{lb} \cdot \vec{p}_T^{\nu(i)})}$$


m_{T2} distribution has a cutoff at m_{top} (transverse mass)



Change of Distributions with m_{top}

Using MC samples with different m_{top} as input



- Distributions change with m_{top}
- High sensitivity is illustrated by a simple estimator: the mean

But we can do more ...

The Template Method

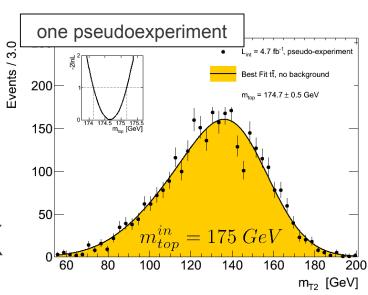
- How to construct the template fit functions
 - Fit distributions separately for each m_{top}
 - Parameters approximately linear in m_{top}:

$$p_i(m_{top}) = a_i \cdot m_{top} + b_i \qquad i \in \{0, ..., 5\}$$

- Get a and b from combined fit
- Fit functions ready for use:

$$f(p_i(m_{top}); m_{T2}) = f(m_{top}; m_{T2})$$

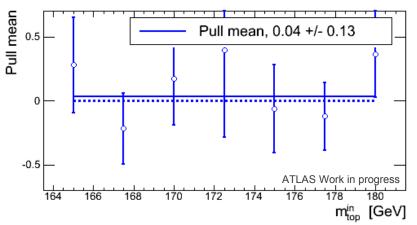
- Now we have a function with
 - m_{top} as the only free parameter
 - Strong dependence on m_{top} (position <u>and</u> shape)
- Fit to a distribution yields most probable value for m_{top}

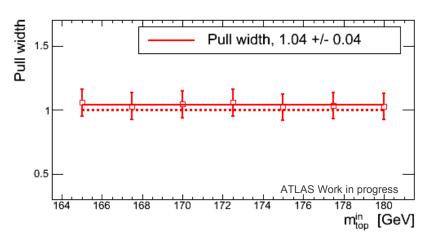


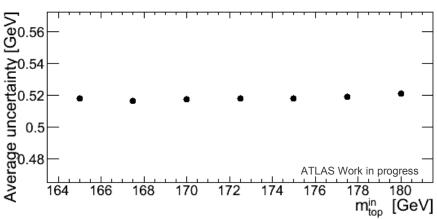
Method Validation

- $ule{}$ Perform pseudoexperiments: Analyze many times samples with known m_{top}^{in}
 - Draw random histograms from the same histograms used to create the template fit functions (pseudodata)
 - Determine m_{top}^{out} by applying the template method for each histogram
- Validate the method
 - $\ ^{\bullet}$ Check agreement of m_{top}^{in} and m_{top}^{out}
 - ullet Get statistical fluctuation from m_{top}^{out}
 - Check the pull distributions:

$$pull = \frac{m_{top}^{in} - m_{top}^{out}}{\sigma_{stat}}$$

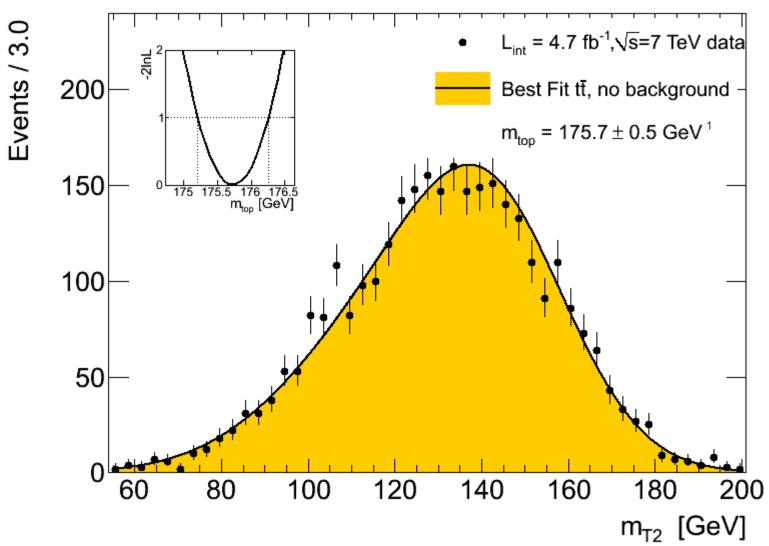

e.g. **50** X





Pseudoexperiments for 4.7 fb⁻¹

Per definitionem:
$$pull = \frac{m^{in}_{top} - m^{out}_{top}}{\sigma_{stat}}$$
 ideally
$$mean = 0$$
 $width = 1$



Expected statistical uncertainty:

$$\sigma$$
 (172.5 GeV) = 0.52 GeV

Central value of m_{top} (2011 ATLAS data)

¹no background

Systematic Uncertainties

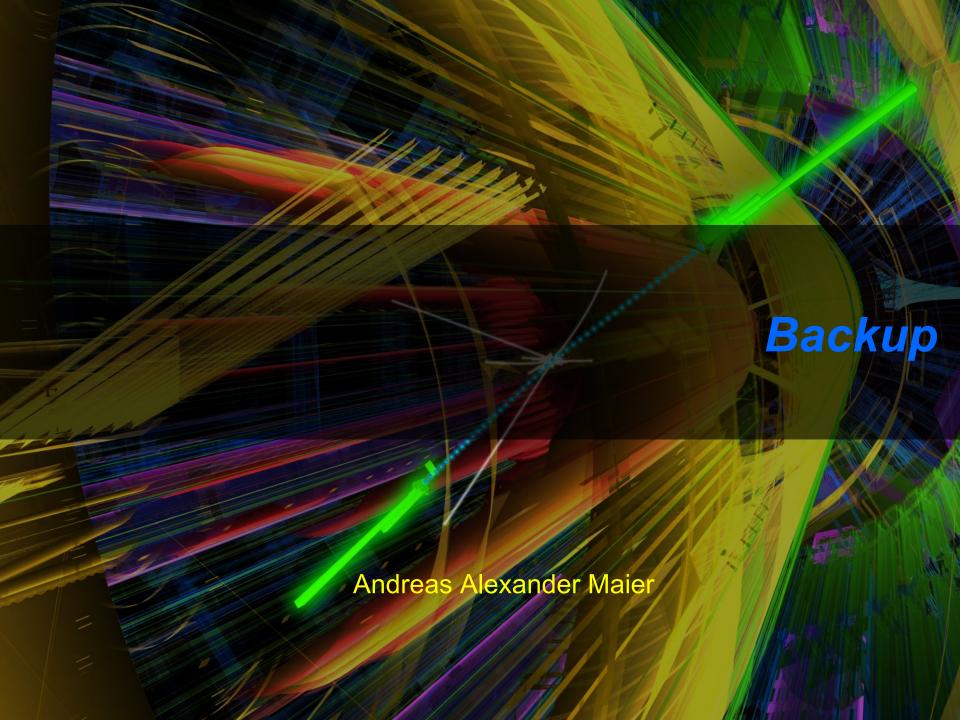
Evaluate systematic uncertainties

- Analyse distributions varied by systematic effect
- ullet Difference in m_{top}^{out} as estimate of the systematic effect

Systematic uncertainty [GeV]	m_{T2}
Data Statistics	0.5
Signal MC generator	0.2
Hadronisation	0.9
ISR and FSR	0.8
Jet Energy Scale	1.8
b-Jet Energy Scale	1.8
Total Systematic Uncertainty	2.8
Total Uncertainty	2.8

Preliminary result:	$m_{top} = 175.7 \pm 0.5 \pm 2.8 \ GeV^1$
---------------------	---

¹no background, just systematic effects shown here, calibration updates to come


Summary

- An analysis on the dilepton channel at ATLAS was shown: The m_{T2} Method This comprised
 - Calculation of the observable, construction of the templates
 - Method validation, application on data
 - Evaluatation of the most important systematics
- Not shown here:
 - The Neutrino Weighting Method
 - The m_{Ib} Method

Thanks to all members of my group for supporting me!

Thank you for your attention!

Data and MC Samples

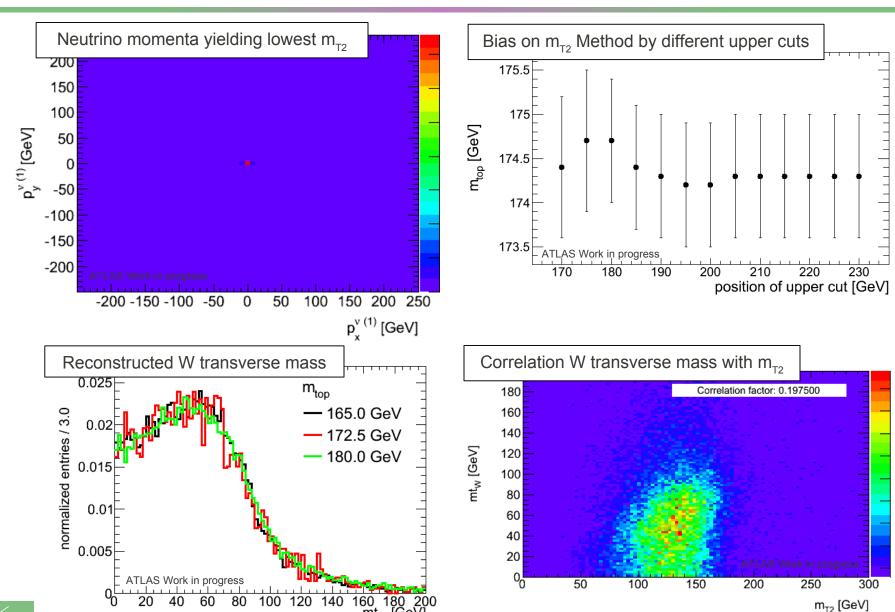
- Data sample
 - corresponding to 4.7 fb⁻¹
 - recorded by ATLAS in 2011
- MC samples for templates
 - Event generator: MC@NLO + HERWIG/Jimmy
 - Detector simulation: GEANT4
 - Jet reconstruction algorithm: AntiKt 0.4 TopoCluster jets
 - B-Jet identification:
 MV1 b-tag algorithm with 70 % efficiency, 1/134 mistag rate
 - Different m_{ton} (160 GeV 190 GeV)
 - Up to 20 times data statistics

Expected Background

Main background sources:

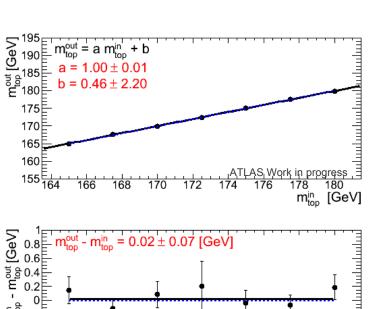
- Drell-Yan process
- Single top production

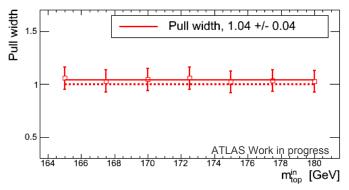
 Diboson production
 - Fake leptons

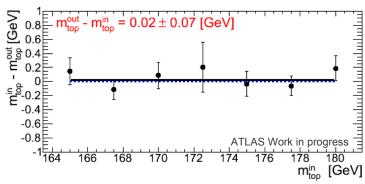

Analysis taking	the	mean	as	estimator ¹
-----------------	-----	------	----	------------------------

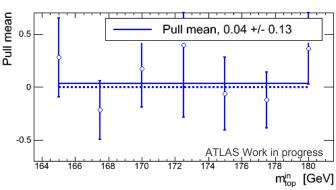
Total Signal	719
Total Background	38
Total Events	757
Background Fraction	5%

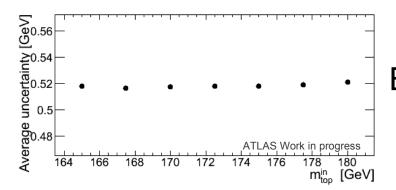
Expected background fraction: Same order of magnitude O(5%)

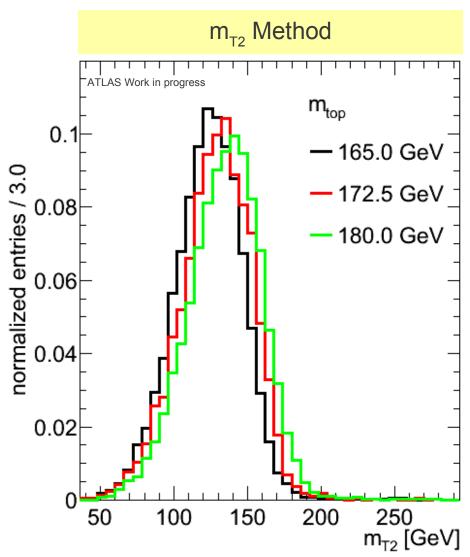


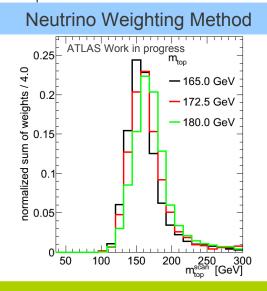

Some Control Plots

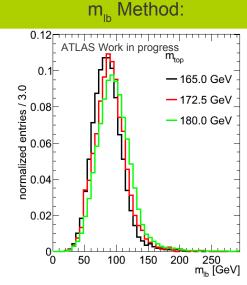





Pseudoexperiments for 4.7 fb⁻¹


Expected statistical uncertainty:

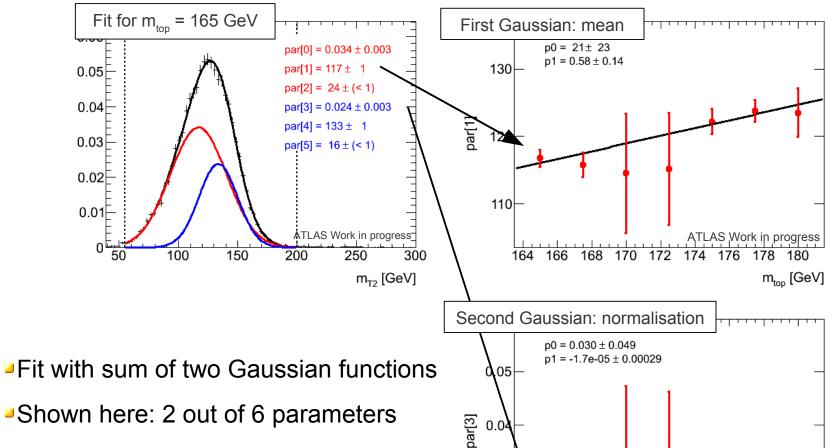

 σ (172.5 GeV) = 0.52 GeV



Change of Distributions with m_{top}

Using MC samples with different m_{top} as input

Systematic Uncertainties


Systematic uncertainty	$\mathbf{m}_{_{\mathrm{T2}}}$	Neutrino Weighting
Data Statistics	0.5	0.6
Signal MC generator	0.2	0.4
Hadronisation	0.9	0.6
ISR and FSR	8.0	1.0
Jet Energy Scale	1.8	1.5
b-Jet Energy Scale	1.8	1.6
Total Systematic Uncertainty	2.8	2.5
Total Uncertainty	2.8	2.6

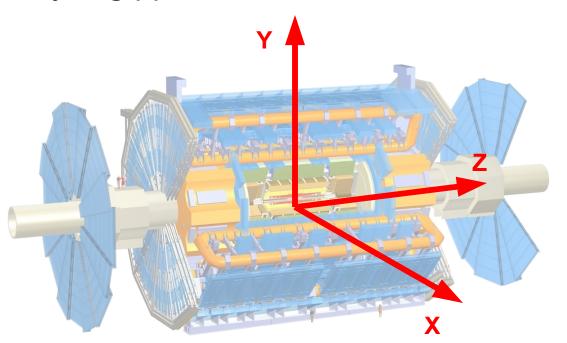
Comparison m_{T2} and Neutrino Weighting Method

- Difference in uncertainty is not significant
- At the moment none of both is the better method

An Example for a Fit

0.03

0.02


- Shown here: 2 out of 6 parameters
- Linear dependence on m_{top}

$$p_i = a_i \cdot m_{top} + b_i \quad i \in \{0, ..., 5\}$$

m_{top} [GeV]

- Multipurpose detector covering almost the full solid angle
- Analyzing pp collisions at LHC: 4.7 fb⁻¹ in 2011

Inner detector

Calorimeters

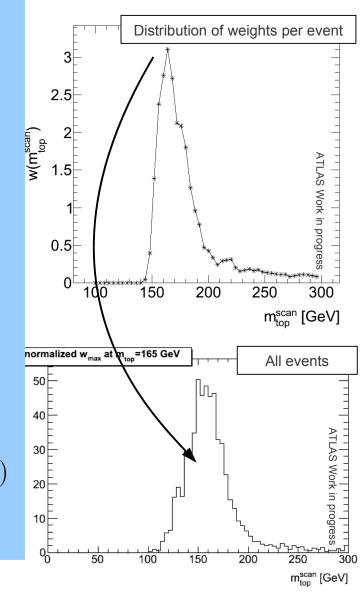
Muon spectrometer

Magnet system

Measure for forward direction: pseudorapidity $\eta = -\log \tan \Theta/2$

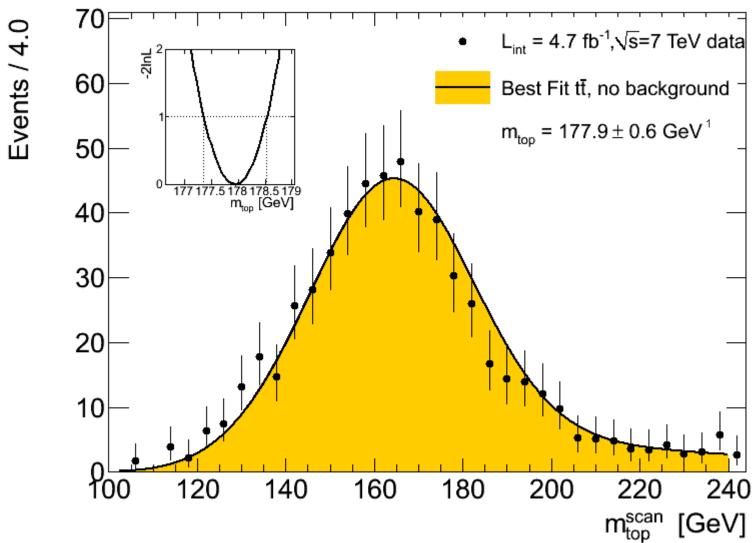
Neutrino Weighting Method¹

- ullet Scan neutrino etas $\eta_
 u,\eta_{ar
 u}$ and m_{top}^{scan}
- Combinatorics: up to 4 solutions of kinematics
- \blacksquare Weight of solution, $i \in \{1, 2, 3, 4\}$


$$w_{i} = \exp\left(-\frac{(MET_{x} - p_{x,i}^{\nu} - p_{x,i}^{\bar{\nu}})^{2}}{2\sigma_{x}^{2}}\right) \cdot \exp\left(-\frac{(MET_{y} - p_{y,i}^{\nu} - p_{y,i}^{\bar{\nu}})^{2}}{2\sigma_{y}^{2}}\right)$$

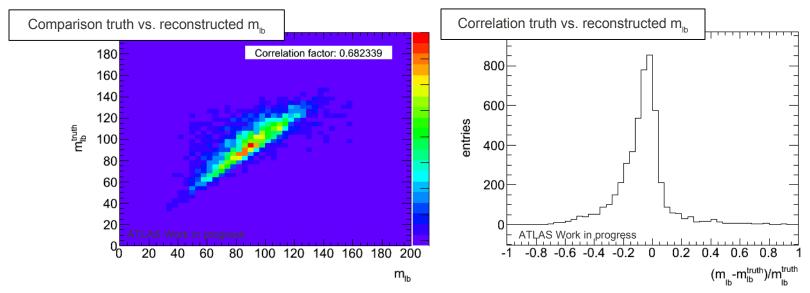
Sum it up for the event weight

$$w(m_{top}^{scan}, \eta_{\nu}, \eta_{\bar{\nu}}, b \, Paar) = \sum_{i=1}^{n} w_{i}$$
$$w(m_{top}^{scan}) =$$


$$\sum_{Paare} \int d\eta_{\nu} d\eta_{\bar{\nu}} P(\eta_{\nu}, \eta_{\bar{\nu}}) w(m_{top}^{scan}, \eta_{\nu}, \eta_{\bar{\nu}}, b \, Paar)$$

ullet For every event take the maximum w_{max}

Central value of Neutrino Weighting



¹no background, calibration updates to come

The m_{Ib} Method

- Aim: Apply the template method on unfolded distributions
- ■m_{III} observable behaves promising

- Outlook: compare theoretical and experimental predictions
 - Cooperation with the Theory 2 group at MPP
 - Unfolding to strip off detector effects using the program TRUEE

Cut Flow on MC samples

True dilepton events/after GRL for data	4%
trigger	82%
good vertex	100%
cosmic rejection	100%
>= 2 leptons	30%
one of the leptons matches the trigger	100%
remove events tagged as e-mu overlap	100%
Jet Cleaning	99%
MET & HT (MET(ee,mumu)>60 GeV, HT (emu)>130 GeV)	74%
At least 2 jets with pt > 25 GeV, eta < 2.5	80%
exactly 2 leptons	100%
Opposite-sign leptons	100%
M(ee, mumu)> 15 GeV	100%
M(ee, mumu) - 91 GeV > 10 GeV	94%
Both leptons match to truth leptons	100%
>=1 tagged jet with MV1 w> 0.601713	87%
>=2 tagged jet with MV1 w> 0.601713	51%

