Search for the Standard Model Higgs Boson in the Channel $H \to ZZ^{(*)} \to 4\ell$

higgs decay channels $H \rightarrow ZZ^* \rightarrow 4I, H \rightarrow W^+W^- \rightarrow I\nu I\nu, H \rightarrow \gamma\gamma, H \rightarrow \tau^+\tau^-, ...$

 $H \rightarrow ZZ^{(*)} \rightarrow 4\ell \quad (I = e, \mu)$ clean experimental signature four isolated leptons 4μ , 4e, or $2\mu 2e$ but low branching ratio for 4/ final state $(O(10^{-3} - 10^{-4}))$ narrow resonance in 4/ mass spectrum background: irreducible ZZ* reducible $Z + jets, t\bar{t}$

Lepton selection in channel $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$

- 2 lepton pairs with same flavour and opposite sign e.g. $\mu^+\mu^-$ and e^+e^-
- sufficient energy, invariant mass of lepton pairs above thresholds
- lepton isolation: do we have an isolated lepton or a lepton from a jet?

two ways to decide:

draw cone with $\Delta R < 0.2$ around lepton and count...

 \bigcirc \sum deposited energy around lepton in the calorimeter

 \rightarrow "calorimeterisolation"

2 \sum tracks around lepton in inner detector

 \rightarrow "trackisolation"

 \rightarrow exclude lepton if the sum of energy or tracks is above threshold!

ightarrow reduction of background events $t\bar{t}$ and Z + jets

b-jet

Results 2011 in the channel $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$

- a slight excess in not yet excluded region 114.4 to 134 GeV
- $m_H \sim 125 \text{GeV}$ with a local significance of 2.1σ
- all channels combined:

exclusion restricts possible SM higgs to low mass region

 \rightarrow important for 2012 analysis!

- a slight excess in not yet excluded region 114.4 to 134 GeV
- $m_H \sim 125 \text{GeV}$ with a local significance of 2.1σ
- all channels combined:

exclusion restricts possible SM higgs to low mass region

 \rightarrow important for 2012 analysis!

Results 2011 in channel $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$

event display 2011 higgs candidate $H \rightarrow ZZ^* \rightarrow 4\mu$

- $H \rightarrow 4I$ analysis improved to increase sensitivity
- improved fitting of electrons (Bremsstrahlung)
- increase of detector acceptance: inclusion of so called calorimeter muons and standalone muons
- challenge 2012: increased # of interactions per crossing "pile up"

including calorimeter muons

• 2011:

required for μ inner detector track and muon spectrometer track

 \rightarrow lack in efficiency in central region

• 2012:

new calorimeter muon: inner detector track and calorimeter track

 \rightarrow increase of efficiency in central region

including calorimeter muons

Inclusion of calorimeter μ into H4I Analysis

- increase of efficiency in central region
- additional events after final selection cuts:

H150:	4.1%	
H200:	5.2%	
ZZ:	4.2%	

challenge for 2012: pile up

Pile up in 2012

 $Z
ightarrow \mu^+ \mu^-$ event in 2012 data with 25 reconstructed vertices

 \rightarrow new difficulties in reconstruction

 \rightarrow example: μ isolation with pile up

challenge for 2012: pile up

Does the lepton isolation change with pile up?

- calorimeterisolation= \sum deposited energy around lepton in the calorimeter
- trackisolation=∑ tracks around lepton in inner detector
- \rightarrow with pile up there is more energy and tracks around the lepton

How do we decrease pile up dependency?

For our study we focused on:

- muons
- trackisolation
- idea: tighten *d*₀ and *z*₀ cuts of track selection

challenge for 2012: pile up

Trackisolation study

- new track selection remove all tracks with z₀ > 1mm
- comparison with default z₀ > 10mm using a tt MC sample
- very important:
- signal efficiency = <u># of signal μ that passed the cut</u> <u># of all signal μ </u>
- background rejection = <u># of bkg μ that did not pass the cut</u> # of all background μ

Result: strict z_0 cut removes pile up dependecy, but decreases rejection \rightarrow keep default method in flavor of better background rejection

K.Ecker (MPI)

Search for SM $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$

- *p*₀ value: probability that signal is caused by background fluctuation
- μ value: best fit signal strength normalized to SM expectation

• H4l combination 2011 and 2012:

low mass excess around $m_H = 125 \text{GeV}$ up to 3.4σ

- full 2011 and 2012 datasets: $H \rightarrow \gamma \gamma H \rightarrow ZZ^{(*)} \rightarrow 4\ell$ full 2011 dataset: $VH \rightarrow b\bar{b}, H \rightarrow \tau \tau, H \rightarrow l\nu l\nu$
- observation of new boson with mass near 126.5 GeV with a 5σ significance

What needs to be done

Is the new boson compatible with a SM higgs boson?

best fit signal strength normalized to SM expectations for $m_H = 126.5 \text{ GeV}$

 $\mu \sim$ 1, but value pulled down by channels which see no excess $H \rightarrow \gamma \gamma : \mu > 1$ and $H \rightarrow 4I : \mu \sim 1$

we need to gather more data and measure properties of the new boson

- exact mass
- is it a spin 0 particle?
- coupling to $W, Z, b\bar{b}, \tau$...
- CP eigenvalue
- self-coupling

Conclusion and outlook

- we found a new boson with a mass of $\sim 126 GeV$
- is it a SM higgs? time will tell...

http://www.fotocommunity.de/pc/pc/display/11692030

- recorded luminosity 2012: ~ 5fb⁻¹
- expected luminosity end of 2012: ~ 25 30 fb⁻¹

with this luminosity discovery in each channel is possible: $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$ $H \rightarrow W^+W^ H \rightarrow \gamma\gamma$

and evidence possible for: $H \rightarrow \tau^+ \tau^-$

 $H \rightarrow b\bar{b}$