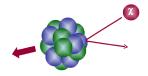
Latest Results of the CRESST Dark Matter Search

a Short Overview

Florian Reindl

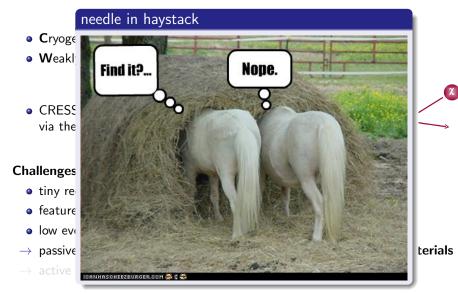
Max-Planck-Institut für Physik


Young Scientist Workshop - Castle Ringberg July 26th, 2012

Direct Dark Matter Search with the CRESST Experiment

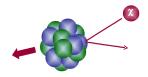
- Cryogenic Rare Event Search with Superconducting Thermometers
- Weakly Interacting Massive Particle

• CRESST aims for a WIMP detection via their elastic scattering off nuclei.



イロト イポト イヨト イヨト

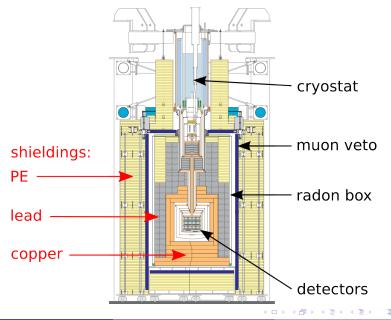
Challenges


- tiny recoil energies ($\mathcal{O}(10\,\mathrm{keV}))$
- featureless spectrum
- low event rates (\mathcal{O} (10 per kg year))
- ightarrow passive background reduction: shielding and use of radiopure materials
- ightarrow active background reduction: event-by-event discrimination

Direct Dark Matter Search with the CRESST Experiment

Direct Dark Matter Search with the CRESST Experiment

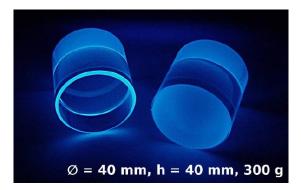
- Cryogenic Rare Event Search with Superconducting Thermometers
- Weakly Interacting Massive Particle
- CRESST aims for a WIMP detection via their elastic scattering off nuclei.

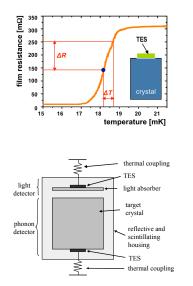


(日) (同) (日) (日)

Challenges

- tiny recoil energies ($\mathcal{O}(10\,\mathrm{keV}))$
- featureless spectrum
- low event rates (\mathcal{O} (10 per kg year))
- ightarrow passive background reduction: shielding and use of radiopure materials
- \rightarrow active background reduction: event-by-event discrimination

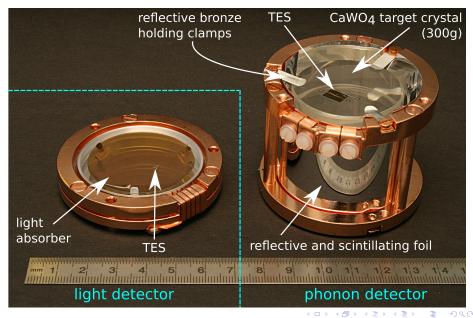

Experimental setup at Gran Sasso Underground Laboratory


CRESST Detectors - Target Material

• scintillating CaWO₄ crystals

• coherent WIMP scattering off nuclei: $\sigma \sim A^2$

CRESST Detectors - Schematic

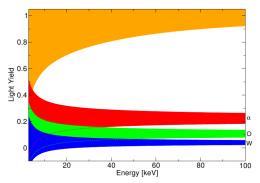

- particle interactions in the crystal excite phonons
- detectors are operated at mK temperatures
- temperature rise $(\mathcal{O}(\mu K))$ detected with Transition Edge Sensor (TES)
- \rightarrow measurement of deposited energy (few keV)

detector module:

simultaneous measurement of

- ${\ensuremath{\, \bullet }}$ energy deposited in crystal E
- scintillation light L
- \rightarrow active background discrimination by light yield $\left(\frac{l}{E}\right)$

CRESST Detectors - Photograph of Opened Module


F. Reindl (MPP)

CRESST Dark Matter Search

CRESST Detectors - Event-by-Event Discrimination

light yield =
$$\frac{\text{light signal}}{\text{phonon signal}}$$

Different event types have a **characteristic** light yield.

(日) (同) (日) (日)

CRESST detectors

- provide an excellent discrimination between:
 - e⁻-recoils: dominant radioactive background
 - nuclear recoils: potential signal events
- are to some extent able to identify the recoiling nucleus: probe WIMP interactions on multiple targets simultaneously (distinctive feature)

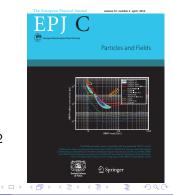
The Latest CRESST Run 32

- first extensive physics run between June 2009 and April 2011
- 8 CaWO₄ modules used for Dark Matter analysis
- total net exposure (after cuts): 730 kg days
- additionally:
 - γ -calibrations: ⁵⁷Co and ²³²Th
 - neutron calibrations (inside and outside shielding): AmBe

• 67 events observed in WIMP search region

data analyzed using maximum likelihood

 a detailed discussion can be found in: *Results from 730 kg days of the CRESST-II Dark Matter Search* Eur. Phys. J. C (2012) 72-1971; arxiv: 1109.0702


<ロ> (日) (日) (日) (日) (日)

The Latest CRESST Run 32

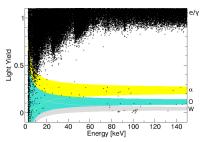
- first extensive physics run between June 2009 and April 2011
- 8 CaWO₄ modules used for Dark Matter analysis
- total net exposure (after cuts): 730 kg days
- additionally:
 - γ -calibrations: ⁵⁷Co and ²³²Th
 - neutron calibrations (inside and outside shielding): AmBe

• 67 events observed in WIMP search region

- data analyzed using maximum likelihood
- a detailed discussion can be found in: *Results from 730 kg days of the CRESST-II Dark Matter Search* Eur. Phys. J. C (2012) 72-1971; arxiv: 1109.0702

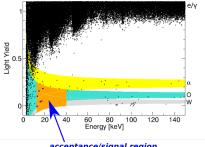
Maximum Likelihood Analysis

The likelihood analysis


- is based on a parametrized model of the backgrounds (discussed in the following) and a possible WIMP signal.
- uses full spectral information (light and light yield) of each event.
- is able to take differences between the detector modules into account (in particular: energy resolution).
- treats all parameters and their uncertainties simultaneously.

\rightarrow in the following: discussion of relevant backgrounds

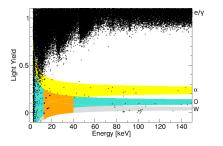
<ロ> (日) (日) (日) (日) (日)


${\rm e^-}/\gamma$ - Background

- dominant background source (mostly intrinsic radioactivity)
- excellent discrimination
- lower threshold of acceptance region defined by expected γ-leakage of one event per detector module

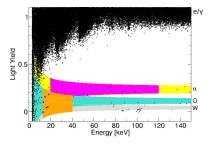
${ m e}^-/\gamma$ - Background

- dominant background source (mostly intrinsic radioactivity)
- excellent discrimination
- lower threshold of acceptance region defined by expected γ-leakage of one event per detector module

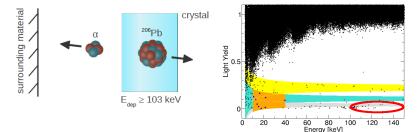


acceptance/signal region incl. O,Ca & W recoil bands

α - Background

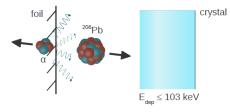

- low-energy α 's due to α -decays below non-scintillation surface (\sim 10 μ m) of holding clamps
- use reference region to estimate contribution in acc. region
- rate in reference region: ~ 1 event per module and month (of net measuring time)

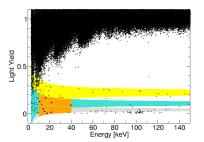
α - Background



- low-energy α 's due to α -decays below non-scintillation surface (\sim 10 μ m) of holding clamps
- use reference region to estimate contribution in acc. region
- rate in reference region: \sim 1 event per module and month (of net measuring time)

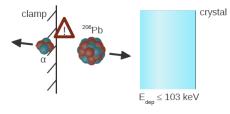
 210 Po \rightarrow 206 Pb (103 keV) + α (5.3 MeV)

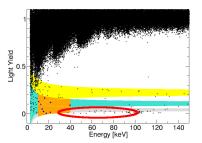

 Po on surface or implanted in crystal


• energy well above acc. region

 $^{210}\mathrm{Po}
ightarrow ^{206}\mathrm{Pb} \ (103\,\mathrm{keV}) + lpha \ (5.3\,\mathrm{MeV})$

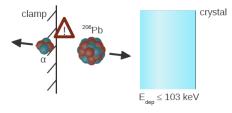
Po on surface or implanted in surrounding material

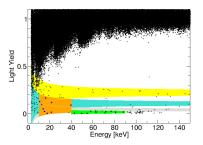

- if α hits scintillating surface: veto by additional light signal
- if α hits uncovered clamps: event with:
 - energy down to acc. region
 - in Pb recoil band (slightly below the W-band)


イロト イヨト イヨト イヨト

 $^{210}\text{Po}
ightarrow ^{206}\text{Pb} \text{ (103 keV)} + lpha \text{ (5.3 MeV)}$

Po on surface or implanted in surrounding material


- if α hits scintillating surface: veto by additional light signal
- if α hits uncovered clamps: event with:
 - energy down to acc. region
 - in Pb recoil band (slightly below the W-band)


イロト イヨト イヨト イヨ

 210 Po ightarrow 206 Pb (103 keV) + lpha (5.3 MeV)

Po on surface or implanted in surrounding material

- if α hits scintillating surface: veto by additional light signal
- if α hits uncovered clamps: event with:
 - energy down to acc. region
 - in Pb recoil band (slightly below the W-band)

• analog to α -bck.: use reference region to estimate contribution of Pb-recoils in acc. region

イロン イロン イヨン イヨン

neutron sources

- source type: radioactive processes inside neutron shielding
- muon-induced type: muons interacting in Pb/Cu shield or in surrounding rock (and undetected by muon veto)

neutron signature

- neutrons can mimic (light) WIMP events
- unlike WIMPs, neutrons can scatter in multiple detectors

estimate of neutron background

- In data: 3 multiple scatterings in acc. region
- (2) calibrate ratio of single to multiple scatterings (separately for both types)
- estimate single scatterings by observed number of multiple scatterings and above ratio

neutron sources

- source type: radioactive processes inside neutron shielding
- muon-induced type: muons interacting in Pb/Cu shield or in surrounding rock (and undetected by muon veto)

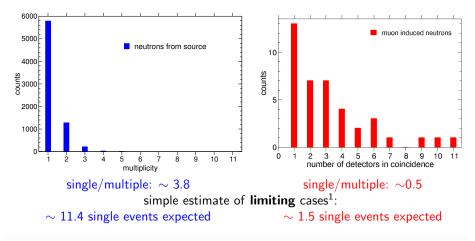
neutron signature

- neutrons can mimic (light) WIMP events
- unlike WIMPs, neutrons can scatter in multiple detectors

estimate of neutron background

- In data: 3 multiple scatterings in acc. region
- (a) calibrate ratio of single to multiple scatterings (separately for both types)
- estimate single scatterings by observed number of multiple scatterings and above ratio

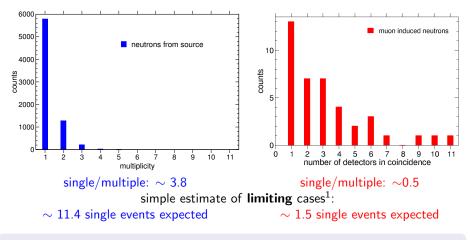
neutron sources


- source type: radioactive processes inside neutron shielding
- muon-induced type: muons interacting in Pb/Cu shield or in surrounding rock (and undetected by muon veto)

neutron signature

- neutrons can mimic (light) WIMP events
- unlike WIMPs, neutrons can scatter in multiple detectors

estimate of neutron background


- In data: 3 multiple scatterings in acc. region
- ② calibrate ratio of single to multiple scatterings (separately for both types)
- estimate single scatterings by observed number of multiple scatterings and above ratio

67 events in acc. region can not be explained by neutrons alone.

¹ result	of	full	likelihood	analysis	between	limiting	cases
---------------------	----	------	------------	----------	---------	----------	-------

July 26th 14 / 19

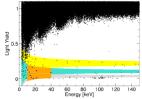
67 events in acc. region can not be explained by neutrons alone.

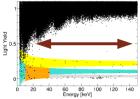
¹ result of	full likelihood	analysis	between	limiting	cases
------------------------	-----------------	----------	---------	----------	-------

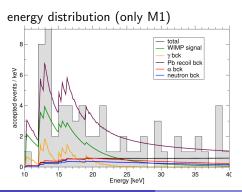
July 26th 14 / 19

Result of the likelihood analysis (paper)

Result (two maxima):					
e/γ -events α -events neutron events Pb recoils	$\begin{array}{c} M1 \\ 8.00 \pm 0.05 \\ 11.5 \substack{+2.6 \\ -2.3} \\ 7.5 \substack{+6.3 \\ -5.5 \\ 15.0 \substack{+5.2 \\ -5.1} \end{array}$	$\begin{array}{c} M2\\ 8.00\pm 0.05\\ 11.2 \substack{+2.5\\-2.3}\\ 9.7 \substack{+6.1\\-5.1\\18.7 \substack{+4.9\\-4.7}\end{array}$			
signal events	$29.4^{+8.6}_{-7.7}$	$24.2^{+8.1}_{-7.2}$			
m_{χ} [GeV] $\sigma_{ m WN}$ [pb]	25.3 1.6 · 10 ⁻⁶	11.6 3.7 · 10 ⁻⁵			
statistical significance	4.7 σ	4.2 σ			

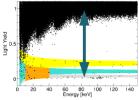

- background only hypothesis rejected with high statistical significance
- → additional source of events needed
- WIMPs would be a source with suitable properties

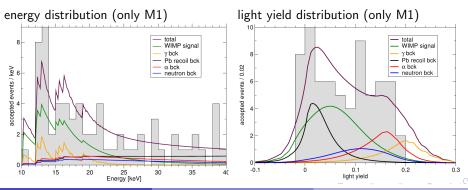

Result of the likelihood analysis (paper)


Result (two maxima):					
e/γ -events α -events neutron events	M1 8.00 ± 0.05 $11.5^{+2.6}_{-2.3}$ $7.5^{+6.3}_{-5.5}$				
Pb recoils signal events	$15.0^{+5.2}_{-5.1}$ $29.4^{+8.6}_{-7.7}$	$\frac{18.7_{-4.7}^{+4.9}}{24.2_{-7.2}^{+8.1}}$			
$m_{\chi} \text{ [GeV]} \\ \sigma_{WN} \text{ [pb]} \\ \hline \text{statistical} \\ \hline$	25.3 1.6 · 10 ⁻⁶	$\frac{11.6}{3.7 \cdot 10^{-5}}$			
significance	4.7 σ	4.2 σ			

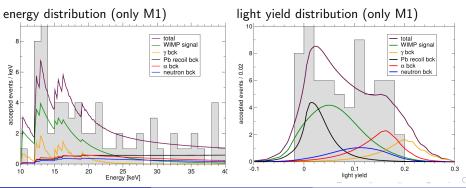
- background only hypothesis rejected with high statistical significance
- \rightarrow additional source of events needed
 - WIMPs would be a source with suitable properties

(日) (同) (日) (日)

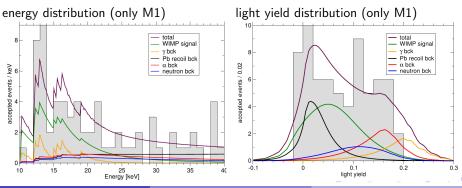




F. Reindl (MPP)


July 26th 16 / 19

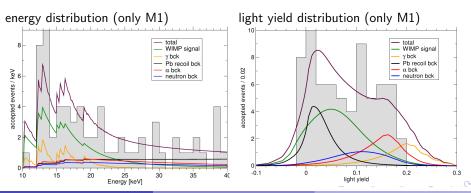
F. Reindl (MPP)


- shape of energy spectra of γ -leakage and possible WIMP signal seem compatible
- ightarrow underestimation of γ -leakage?

F. Reindl (MPP)

- shape of energy spectra of $\gamma\text{-leakage}$ and possible WIMP signal seem compatible
- \rightarrow underestimation of γ -leakage?

- γ-leakage appears at high light yields
- possible WIMP signal at low light yields
- $ightarrow \ \gamma\mbox{-leakage}$ ruled out as explanation for the excess

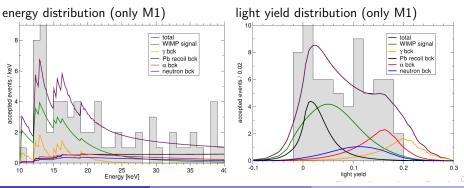


but

F. Reindl (MPP)

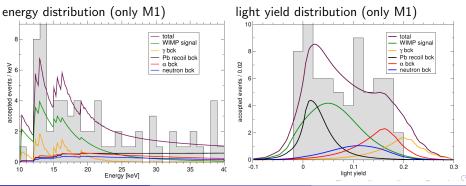
Spectral Distribution of Signal Events The other way round:

 Only the Pb recoil background has similar light yield as the possible WIMP signal

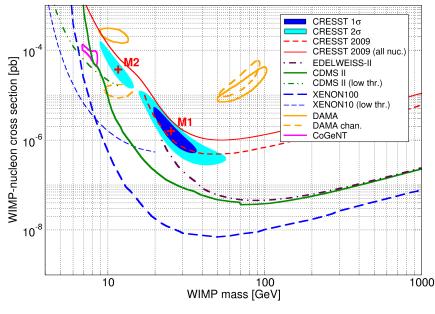

F. Reindl (MPP)

The other way round:

 energy spectrum of Pb recoils incompatible with possible WIMP signal

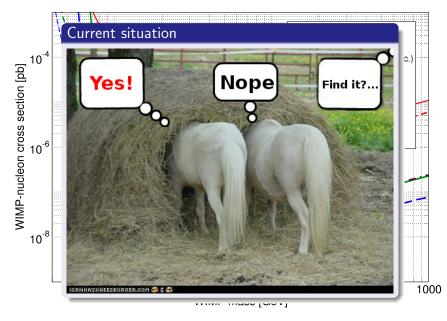

 Only the Pb recoil background has similar light yield as the possible WIMP signal

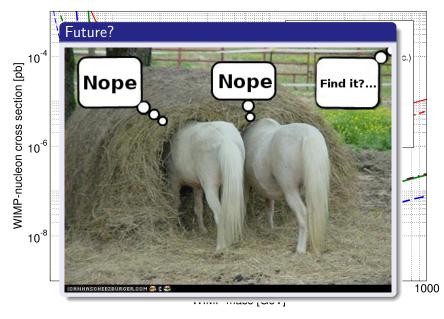
F. Reindl (MPP)


Conclusion:

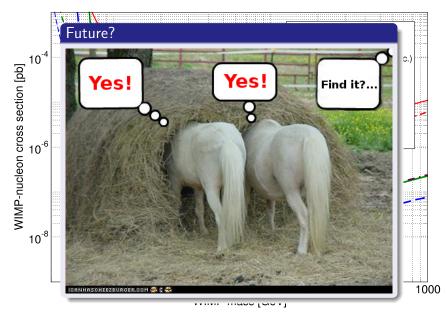
- Simultaneous measurement of phonon and light is crucial to discriminate a possible WIMP signal from background.
- The excess can not be explained with the known backgrounds alone.

F. Reindl (MPP)


WIMP Parameter Space



F. Reindl (MPP)


17 / 19

17 / 19

Summary and Outlook

summary:

- extensive and successful physics run with 730 kg days of data
- 67 candidate events not explainable with known backgrounds alone
- a light WIMP would fit as an explanation for this excess
- background level needs to be further reduced for clarification

outlook for the next run

- further background reduction:
 - new clamps (from ultra-radiopure material)
 - radon prevention during mounting
 - test of new and fully-scintillating module design(s)
 - additional neutron shielding (inside the lead/copper shielding)
- increase of target mass

<ロ> (日) (日) (日) (日) (日)

Thank you.

・ロト ・四ト ・ヨト ・ヨト

Backup

▲□→ ▲圖→ ▲温→ ▲温→

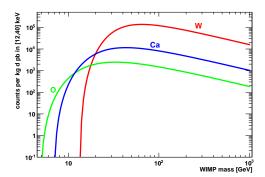
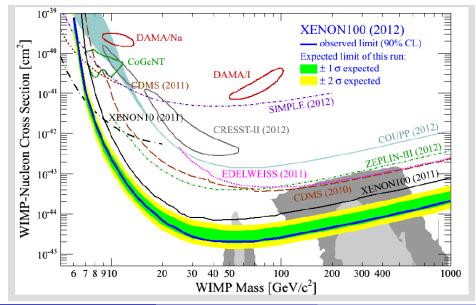
Signal Composition

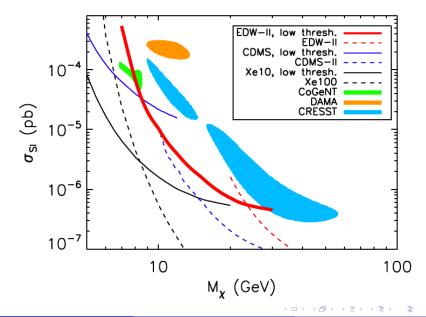
- coherent WIMP scattering of nuclei
- $\rightarrow\,$ W recoils dominate

・ロト ・回ト ・ヨト ・

Signal Composition

- coherent WIMP scattering of nuclei
- $\rightarrow\,$ W recoils dominate
 - but: finite low-energy threshold of detectors
- $\label{eq:scatterings} \begin{array}{l} \rightarrow \mbox{ for light WIMPs} \\ \mbox{ scatterings off W are below} \\ \mbox{ detection threshold} \end{array}$
- $\rightarrow\,$ signal: O and Ca recoils

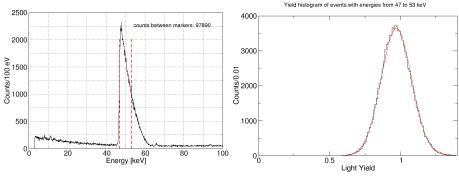




Image: A math a math

Xenon100 - 2012 Result

F. Reindl (MPP)

Edelweiss - Iow Threshold Analysis 2012

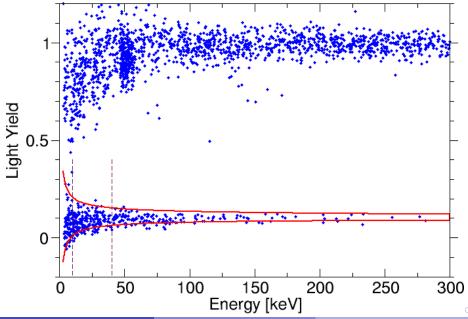


Overview Detector Modules

module	exposure [kg d]	E ^{min} [keV]	acc. events
Ch05	91.1	12.3	11
Ch20	83.0	12.9	6
Ch29	81.1	12.1	17
Ch33	97.0	15.0	6
Ch43	98.1	15.5	9
Ch45	93.1	16.2	4
Ch47	99.0	19.0	5
Ch51	88.5	10.2	9
total	730.9	-	67

・ロト ・回ト ・ヨト ・ヨト

Gaussianity

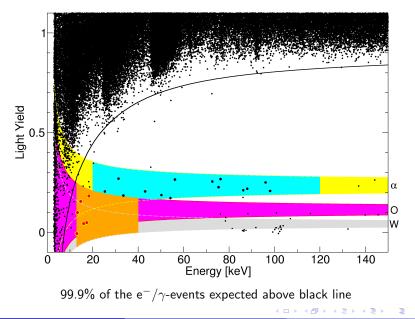


• only one event outside distribution (probably an α -event)

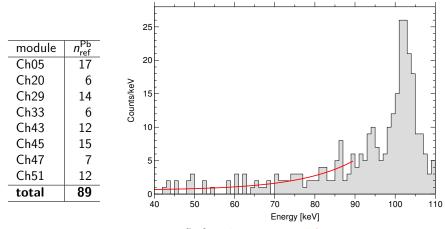
• 10⁵ events inside peak

イロト イヨト イヨト イヨト

Neutron Calibration - Calculation of Nuclear Recoil Bands

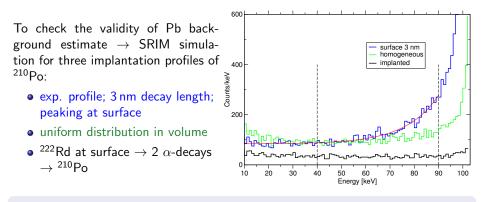


F. Reindl (MPP)


CRESST Dark Matter Search

July 26th backup slide: 7

Gamma Leakage


Pb Recoil Background - Reference Region

fit function: exponential + constant

A B > A B >

Pb Recoil Background - SRIM simulation

No configuration produces rise towards lower energies \rightarrow estimation valid.

Image: A math a math

Result of DM analysis - Diploma Thesis - I

input to the likelihood analysis EPJ C, 2012, Volume 72, Number 4, 1971

- processed raw data with a net exposure of 572kg days (compared to 730kg days for the run 32 paper)
- $\bullet\,$ resolution fit \Leftrightarrow definition of the recoil bands
- multiplicity spectra for muon-coincident events and coincident events in acc. region

• • • • • • • • • • • • •

Result of DM analysis - Diploma Thesis - II

Detector Module		Analysis of this Work		Analysis of Run32 Paper	
Name	Channel	E ^{min} [kev]	Acc. Events	<i>E^{min}_{acc}</i> [kev]	Acc. Events
VK33/F.	Ch05	15.2	3	12.3	11
Ver./B/Q	Ch20	15.5	5	12.9	6
Maja/H.	Ch29	13.2	12	12.1	17
Sabine/J	Ch33	15.3	5	15.0	6
Wibke/X	Ch43	16.2	9	15.5	9
K07/D.	Ch45	17.7	7	16.2	4
Daisy/S.	Ch47	16.5	5	19.0	5
Rita/S.	Ch51	11.5	6	10.2	9
Total			52		67
Rate		0.091/	(kg day)	0.092/	(kg day)

- The rates of signal events are in good agreement!
- $\bullet\,$ The resolution fit of this analysis overestimates the $\gamma-{\rm leakage.}$
- $\rightarrow\,$ A new version of the resolution fit is currently under investigation/development.

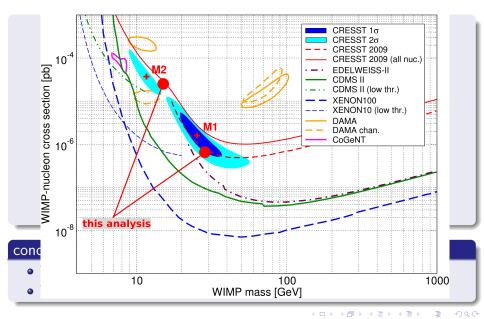
F. Reindl (MPP)

CRESST Dark Matter Search

Result of DM analysis - Diploma Thesis - III

	Analysis of this Work		Analysis of run32 paper	
	M1	M2	M1	M2
$/\gamma$ -Events	8.0	8.0	8.0	8.0
α -Events	9.8	9.6	11.5	11.2
Neutron Events	7.7	9.1	7.5	9.7
Pb Recoils	11.1	12.5	15.0	18.7
Signal Events	13.0	10.2	29.4	24.2
m_{χ} [GeV]	28.9	13.0	25.3	11.6
σ_{WN} [pb]	$7.6 \cdot 10^{-7}$	$1.6\cdot 10^{-5}$	$1.6 \cdot 10^{-6}$	$3.7\cdot10^{-5}$
Significance	2.5 <i>σ</i>	1.9σ	4.7σ	4.2σ

conclusion


- The WIMP parameters are compatible between both analyses.
- The significance for a WIMP signal is much lower in this analysis.

F. Reindl (MPP)

CRESST Dark Matter Search

July 26th backup slide: 13

Result of DM analysis - Diploma Thesis - III

Result of DM analysis - Diploma Thesis - IV - Conclusion

The analysis of this work and the CRESST analysis (run32 paper)

- are compatible concerning the rate of signal events.
- agree in mass and cross-section for a possible WIMP signal.
- disagree in the significance for a WIMP signal.

The resolution fit plays the major role in the explanation of the discrepancy between both analyses.

Image: A math a math