

Young Scientist Workshop 2012

Aaron Michel

Source: mpg.de

- Introduction in low background challenges (esp. Gerda)
- Implementation of a Monte Carlo shielding simulation
- Intentions and the Goal of the simulation
- Information about the results and outcome
- Investigation of the details
- Importance of the results
- In the near future

Introduction: Low Background Experiments

- Low Background experiments
 - e.g. the neutrinoless doublebeta decay
 - Expected event rate 0.1 1 counts per kg and year
 - A very low background is needed to see the relevant signal
 - Common Background sources:
 - Environmental radioactive background
 - Cosmic rays
 - Internal detector contamination
 - Can't be removed once the detector is contaminated
 - Most important in Germanium detector: ⁶⁰Co and
 ⁶⁸Ge due to spallation reaction of hadrons with ⁷⁶Ge
 - Construction and deployment of transport & storage shields to use during production of the detectors

- Example: Germanium detector production for the GERDA experiment:
 - Extraction & enrichment (Krasnoyarsk), purification (Gosslar), zone refinement & crystal growing (Oak Ridge), final processing & testing (Olen/Mol), experimental setup (Gran Sasso)
- Shielding is needed during transport & production

GEKDA ENFICIED GEFMANIUM						
New Name.	Used Mass	Name	Constituents	Initial Mass	Current Mass	State
grams	grams	Tail	6001	1161.8 g	1161.8 g	Ingot
Grown Crystal Gut Crystal	grams	K001	Bar001 Bar002	5 g	5 g	Kerf
Octor Crystal OKerf OCrystal Remainder	grams	Bar001-5	Bar001	1128.6 g	1128.6 g	Ingot
	grams	Bar002-5	Bar002	1060.1 g	934.6 g	Ingot
On: 25 ÷ July ÷ 2012 ÷ At:	grams	C2419-BS	C2419	35 g	32.5 g	Crystal Remainder
Gapherra 1	grams	k003	C2419	0.1 g	0.1 g	Kerf
Select Input Materials	grams	C2419-SQ	C2419	1.9 g	1.9 g	Crystal Remainder
	grams	C40180-BS	C40180	31.2 g	28.5 g	Crystal Remainder
Add Exposure to Multiple	grams	C40180-SQ	C40180	2.4 g	2.4 g	Crystal Remainder
Records	grams	C40183-BS	C40183	37.3 g	37.3 g	Crystal Remainder
On: 25 : July : 2012 :	grams	C2425-SQ	C2425	3.6 g	2.9 g	Crystal Remainder
At:	grams	C2425-BS	C2425	48.1 g	48.1 g	Crystal Remainder
The material was moved to:	·	C40183-SQ	C40183	2.4 g	1.7 g	Crystal Remainder

Online exposure database: How big is the cosmogenic activation?

Find a way to take into account the different shields?

Right now, shielding factors:

0 for the cave 1 in the open, car, canberra 0.12 for the shipping container

July 27, 2012 - Shielding investigations

Pictures: Gerda detector production

Simulation of shielding scenarios:

- Using GEANT4 (GEometry ANd Tracking 4)
 - Huge Collection of Libraries and Code

- To create virtual geometries up to the last screw
- Possibility to put together all the materials from isotopes
- Includes parametrization and tables for physics processes from low to very high energies
- Used also in medicine simulations (concerning cancer treatment etc) besides physics simulations for the particle tracks within detectors
- Particles can be injected (shot) at any point, with any energy
- Events (hits, geometric boundary crossing etc can be recorded and stored in a root file
- Implementation done with C++

Simulation of cosmic ray shielding

- Monte Carlo Shielding Simulations
 - For two Cosmic Ray Particles (secondaries)
 - Cosmic ray neutrons
 - Cosmic ray muons
 - With different Shielding Materials
 - Water (density 1g/cm³)
 - Steel (density 7.9g/cm³)
 - PE (density 0.97g/cm³)

- Possibility to compare with 'water equivalent' (area density)
- Analysis:
 - Compare spectra for different shielding depth
 - Compare particle count w/ different energy threshold
 - Properties of different shielding materials

Simulation of cosmic ray shielding

- In this simulation:
- MaGe, a framework on top of Geant4 was used (MaGe for Majorana GERDA)
 - Many detector geometries already implemented
 - Already some physics list compilations included
 - Different predefined output schemes available
 - Continuously updated with new developments
- Possibility to add the shielding scenarios as a 'detector' geometry
 - To record the particles at different depth, 'slices' of the shield put together
 - Double backscatter adds some false particles to the outcome
 - Small systematic effect which is not noticeable

- Monte-Carlo-Simulations of the shields
 - MaGe with the QGSP Hadron List enabled:
 - Gives the best results in comparison to other simulations and also measurements
 - A spectrum of sea-level neutrons & muons used to simulate C.R. coming from above through a shield
 - The energy spectrum of the particles below shield gets recorded
 - Investigations for different Energies (Thresholds) possible e.g. Isotope production within detector material

- Ultimate goal:
 - Prevent the detector material to be activated by cosmic rays
- First steps:
 - Understand the influence of different cosmic ray components
 - Understand the shielding powers of the materials used
- Further steps:
 - Adapt the transportation shield accordingly e.g. add more water on top of the steel etc.

Cosmic ray simulation

- A spectrum of secondary cosmic neutrons is used from a measurement in New York City
 - Will look different for other locations
 - Will look different for other times
- This spectrum is the base for a series of Monte-Carlo-Simulations
- Interested in:
 - Amount of neutrons below shield
 - Energy of these neutrons

In what way is the cosmogenic activation of the detector material reduced?

- In relation to shielding depth
- In relation to shielding material

- First intent:
 - Reproduce the plot shown below (nucleonic component & neutrons from muons)
 - For different materials
 - For different energy thresholds of neutrons

Problems with this Plot:

- Semi-empirical calculations and assumption of 'water equivalent'.
- Also: no energy information.

Properties of shielding materials

- Concerning shallow underground / shallow shielding
 - At which depth are there as many neutrons from muons than from the nucleonic component
 - This the amount of shielding that ideally should always provided

Neutronshielding

- Neutron flux before and after shield
 - Arbitrary spectrum of cosmic ray neutrons at sea level

• Neutron count before and after shield

Basically no more neutrons below 4m of Steel or 20m of Water/PE! Water-equivalent quite different for different materials!

Neutronshielding

Neutron count before and after shield

Muonshielding

• Muon flux before and after shield:

July 27, 2012 - Shielding investigations

• Neutron count (relative to 1 muon hitting the shield):

At some depth the neutrons from steel might eventually level up with the lighter material

Much more neutrons below a steel shield!

Only very slow drop of the Neutronrate

Shielding

For the Isotope production inside the detector below a shallow shield:

- We find following particles below shield:
 - Neutrons, Protons, Electrons, Gamma, Muons, Pions, Neutrinos, Ions, other Hadrons(K, Λ, Σ)
- Largest contribution leading to isotope production in Ge: Neutrons (directly or produced inside shield)
 - Focus on Isotope production from the neutron component
 - gives a first idea how to protect the detector more efficiently

⁶⁰Co and ⁶⁸Ge production

- Neutron induced ⁶⁰Co and ⁶⁸Ge production within Ge
 - Excitation function extracted from Geant4

Thresholds 20MeV (⁶⁸Ge) & 90Mev (⁶⁰Co)

from GSTR-08-002 by J. Janicsko

⁶⁰Co Production (from neutrons)

- After shielding neutrons
- After shielding muons

relative to 0m shield!

⁶⁸Ge Production (from neutrons)

- After shielding neutrons
- After shielding muons

relative to 0m shield!

 For all neutrons (compare to Heusser's Plot) neutrons

Neutroncount after shield

- For different energy thresholds:
 - Intersection point changes!

- Important outcome:
 - For shallow shields water-equivalent not the proper value to compare different materials
 - For the first meter: many more neutrons below steel shield but they have rather low energy – low contribution to spallation
 - For different shielding materials and energy thresholds the intersection-point between neutron component and muon-produced neutrons changes
- Next steps:
 - Measurements to compare simulations to actual data
 - Simulations for more materials → actual shielding container geometry
 - Include all other excitation functions for gamma & other particles for better understanding of the C.R. influence on Germanium

More slides (spectra after shielded neutron)

July 27, 2012 - Shielding investigations

More slides (spectra after shielded muon)

July 27, 2012 - Shielding investigations

More slides (some other stuff)

