Study of the decay ${\rm B^0} \rightarrow \omega {\rm K_S^0}$ at Belle

Veronika Chobanova

Young Scientist Workshop in Ringberg July 24th, 2012

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Physics at Belle

Belle? Never heard of it...

Standard Model is successful but incomplete

- Cannot explain Dark Matter
- Assumes that neutrinos are massless
- Insufficient explanation of the matter-antimatter asymmetry in the Universe today

To explain the matter-antimatter asymmetry **CP violation** is needed (Sakharov conditions)

Parity transformation

CP transformation = Charge conjugation \times Parity transformation

- CP violation in the Standard Model: Cabbibo-Kobayashi-Maskawa (CKM) mechanism
- CKM complex, unitary 3×3 matrix describes the relation between the weak and the mass eigenstates of quarks

$$\left(\begin{array}{c} d' \\ s' \\ b' \end{array} \right)_{\rm weak} = V_{\rm CKM} \left(\begin{array}{c} d \\ s \\ b \end{array} \right)_{\rm mass} \equiv \left(\begin{array}{c} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{array} \right) \left(\begin{array}{c} d \\ s \\ b \end{array} \right)_{\rm mass}$$

 V_{ij} : quark flavour transition couplings

$$V_{
m CKM} = egin{pmatrix} 1-\lambda^2 & \lambda & A\lambda^3(
ho-i\eta)\ -\lambda & 1-\lambda^2/2 & A\lambda^2\ A\lambda^3(1-
ho-i\eta) & -\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

 $V_{\rm CKM}$: 4 free parameters (3 Euler angles and a complex phase) $\lambda = \sin \theta_C \approx 0.22, \ \theta_C$: Cabibbo angle CP violation when $\eta \neq 0$

Unitarity triangle in the *B* meson system

- Measurement of the angles and the sides of the unitarity triangle \rightarrow access to its area
- Amount of CP violation \propto area of the unitary triangle
- CP violation predicted by the SM not enough to explain the matter-antimatter asymmetry
- \Rightarrow New Physics required!

- New Physics could be found in B meson decays dominated by penguin Feynman diagrams
- New Physics enters the scene in the form of new particles in the loop
- Such are decays via $b\to sq\overline{q}$ transitions, such as $B^0\to\omega K^0_S$

 \Rightarrow Decay is dominated by the penguin contribution

Physical Motivation

Why is the decay $\mathsf{B}^0 o \omega \mathsf{K}^0_\mathsf{S}$ so awesome?

Capturing the Physics

NOT showing the ATLAS detector here

How to access the angle ϕ_1 from the decay $B^0 \rightarrow \omega K_S^0$?

- Decay $B^0 \rightarrow \omega K^0_S$ a CP final state $f_{\rm CP}$
- We measure number of events $N_{\rm B^0}$ and $N_{\rm \overline{B}0}$ decaying into $f_{\rm CP}$ in a certain period of time Δt
- $a_{CP}(\Delta t, f_{CP})$: Time-dependent CP asymmetry

$$a_{CP}(\Delta t, f_{CP}) = \frac{N_{\overline{B}0}(\Delta t, f_{CP}) - N_{B^0}(\Delta t, f_{CP})}{N_{\overline{B}0}(\Delta t, f_{CP}) + N_{B^0}(\Delta t, f_{CP})} = \mathcal{A}_{CP}\cos(\Delta m\Delta t) + \mathcal{S}_{CP}\sin(\Delta m\Delta t)$$

 \mathcal{A}_{CP} : measure for the direct CPviolation $\mathbb{B}^0 \to f_{CP} \neq \overline{\mathbb{B}}^0 \to f_{CP}$ $\begin{array}{l} \mathcal{S}_{CP} \colon \text{measure for the mixing induced} \\ \mathcal{CP} \text{ violation} \\ \mathbb{B}^0 \to \overline{\mathbb{B}}^0 \to f_{CP} \neq \overline{\mathbb{B}}^0 \to \mathbb{B}^0 \to f_{CP} \end{array}$

$$\mathcal{S}_{CP} = \sin 2\phi_1$$

We need N_{B^0} and $N_{\overline{B}0}$ decaying into $B^0 \to \omega K^0_S$ in a certain period of time Δt

N_{B^0} and $N_{\overline{B}0}$: B⁰ or \overline{B}^0 ?

 \rightarrow Look at the other B (tag-side): If $I^- \Rightarrow \overline{B}{}^0$ on the tag-side and B^0 on the CP-side If $I^+ \Rightarrow B^0$ on the tag-side and $\overline{B}{}^0$ on the CP-side

Δt measurement

 $\begin{array}{l} \mbox{Asymmetric beam energies at KEKB} \\ \Rightarrow \mbox{Boost of the center of mass system} \\ \mbox{Measurement of } \Delta z \sim 100\,\mu{\rm m} \mbox{ instead of } \Delta t \sim \mbox{ ps} \\ \mbox{Obtain } \Delta t = \Delta z/c \langle \beta \gamma \rangle \end{array}$

We have the data, now what?

 \rightarrow Start of the analysis

Belle's analysis recipy

Ingredients: 240 signal events 360 background events from other B decays 17000 background events from u, d, s, c quark decays

Preparation (blind):

- Develop an algorithm to reconstruct $\mbox{B}^0
 ightarrow \omega \mbox{K}^0_{
 m S}$
- Study the shape of the signal and the backgrounds
- Build a 7D multidimensional fit to discriminate signal and background
- Test the performance of the fit (bias?)

Preparation (with real data):

- Apply your 7D fit to the data
- Fit result: $\mathcal{A}_{CP} \ \mathcal{S}_{CP} \ N(B^0 \rightarrow \omega K^0_S)$
- Perform systematic studies

Extract $N(B^0 \rightarrow \omega K_S)$, $A_{\rm CP}$ and $S_{\rm CP}$ from a 7D extended unbinned maximum likelihood fit

Fit observables

- $\Delta E = E_{B_{
 m rec}}^{
 m CMS} E_{
 m beam}^{
 m CMS}$
- $M_{\rm bc}$: beam-constrained mass of the B meson, $M_{\rm bc} = \sqrt{(E_{\rm beam}^{\rm cms})^2 (p_{\rm B}^{\rm cms})^2}$
- $\mathcal{F}_{B\bar{B}/q\bar{q}}$: Fisher discriminant, event-shape dependent
- $m_{3\pi}$: mass of the reconstructed ω candidates
- $\mathcal{H}_{3\pi}$: helicity of the reconstructed ω candidates
- Δt : time difference between the two B decays
- q = 1 for B^0 and q = -1 for \overline{B}^0

Multidimensional analysis \Rightarrow model for signal and background necessary

Results from the Fit to the Data

Black: Full PDF Total background BB background

Partial box opening with $152 \times 10^6 \, B\overline{B}$ pairs (Full statistics: $772 \times 10^6 \, B\overline{B}$ pairs) Unbinned maximum likelihood fit to 6 observables

Preliminary Result from $152 \times 10^6 \text{ BB}$ pairs $\mathcal{BR}(B^0 \to \omega K^0) = [4.94^{+1.28}_{-1.14}(\text{stat})] \times 10^{-6}$ $\tau_{B^0} = [1.522 \pm 0.35(\text{stat})] \text{ ps} \text{ (cross-check)}$

- ► Belle $388 \times 10^6 \, \text{B}\overline{\text{B}}$ pairs $\mathcal{BR}(\text{B}^0 \to \omega \text{K}^0) = [4.4^{+0.8}_{-0.7} \pm 0.4] \times 10^{-6}$
- ▶ World average $\mathcal{BR}(B^0 \rightarrow \omega K^0) = [5.0 \pm 0.6] \times 10^{-6}$ $\tau_{B^0} = [1.519 \pm 0.007] \text{ ps}$

Conclusion

- The decay ${\sf B}^0\to\omega{\sf K}^0_{\sf S}$ is sensitive to the angle ϕ_1
- Deviations in the measured value of ϕ_1 could be a hint at New Physics
- So far, the analysis method is providing us with better results than the previous Belle analysis
- The analysis method is being improved in order to reduce the uncertainties of the measurement

Thank you for your attention

Previous Measurements of $B^0 \rightarrow \omega K^0_S$

	BB-pairs	${\cal BR}({\sf B^0} o \omega {\sf K^0})$	\mathcal{A}_{CP}	\mathcal{S}_{CP}
Belle Belle BaBar	$\begin{array}{l} 388 \times 10^{6} \\ 535 \times 10^{6} \\ 467 \times 10^{6} \end{array}$	$(4.4^{+0.8}_{-0.7} \pm 0.4) \times 10^{-6}$ [1] (5.4 ± 0.8 ± 0.3) × 10 ⁻⁶	$-0.09 \pm 0.29 \pm 0.06 \\ 0.52^{+0.22}_{-0.20} \pm 0.03$	$0.11 \pm 0.46 \pm 0.07[2]$ $0.55^{+0.26}_{-0.29} \pm 0.02$ [3]

Full data set of Belle $772\times 10^6~\text{B}\overline{\text{B}}$ pairs

PhysRevD.74.111101
 PhysRevD.76.091103
 PhysRevD.79.052003

Challenging analysis

- $\mathcal{BR}(B^0 \rightarrow \omega K^0) \sim 10^{-6}$ (small)
- \blacktriangleright Large background contribution from $q\overline{q}$ (u,d,s,c) background

Our method

- Use loose cuts on the observables for maximum signal sensitivity
- ▶ Multidimensional fit to the modelled probability density functions to extract $\mathcal{BR}(B^0 \to \omega K^0)$, \mathcal{A}_{CP} , \mathcal{S}_{CP} and their uncertainties

Toy MC studies

Test the model with Toy MC **Expected number of events**

signal ~ 230 $q\bar{q} \sim 5300$ $\overline{BB} \sim 130$ Events / (0.01 GeV) 300 250 200 150E 100 50 Normalised Residuals -0.15 -0.1 -0.05 0.05 0.1 ∆E (GeV) Projection of $\Delta E = E_{B_{\rm res}}^{\rm CMS} - E_{\rm beam}^{\rm CMS}$

Full data set of Belle: $772\times 10^6\,B\overline{B}$ pairs

Expectations for the statistical uncertainty of:

▶
$$\mathcal{BR}(\mathsf{B}^0 \to \omega \mathsf{K}^0)$$

BaBar (final)	Belle (previous)	Belle	(current)
13% *	13% **	9.2	2% **

• \mathcal{A}_{CP}

BaBar (final)	Belle (previous)	Belle	(current)
0.20 *	0.24 **	0.19 **	

► S_{CP}

BaBar (final)	Belle (previous)	Belle ((current)
0.26 *	0.38 **	0.28 **	

* Final result of BaBar

** Scaled to the full data set of Belle

 \Rightarrow Our method is better than the previous Belle analysis

CP Violation Measurement

$$\begin{array}{lll} m_{\Upsilon(4S)} & = & 10.58\,{\rm GeV/c^2} \approx 2\times m_B \\ m_B & = & 5.28\,{\rm GeV/c^2} \end{array}$$

B Meson production

► Ŷ(4S) resonance decays almost exclusively into a BB pair

•
$$\Upsilon(4S): J^P = 1^-$$

B: $J^P = 0^-$

- \Rightarrow *B* meson pair in a p-wave
- \Rightarrow asymmetric wave function
- \Rightarrow *B* mesons have opposite flavour
- $B\overline{B}$ pair coherent

CP Violation in the B Meson System

Time-dependent CP asymmetry

$$a_{CP}(\Delta t, f_{CP}) = \frac{N_{\overline{B}0}(\Delta t, f_{CP}) - N_{B^0}(\Delta t, f_{CP})}{N_{\overline{B}0}(\Delta t, f_{CP}) + N_{B^0}(\Delta t, f_{CP})} = \mathcal{A}_{CP} \cos(\Delta m \Delta t) + \mathcal{S}_{CP} \sin(\Delta m \Delta t)$$

Toy MC Study

Toy MC Study

100 pseudo-experiments generated: 907 events for SVD1 and 5554 events for SVD2

	$\textit{N}_{\rm Sig}$	$N_{ m qar q}$	$\textit{N}_{B^0\overline{B}0}^{\rm Charm}$	$\textit{N}_{B^+B^-}^{\rm Charm}$	$\textit{N}_{B^0\overline{B}0}^{\rm Charmless}$	$N_{B^+B^-}^{\rm Charmless}$	$N_{\mathrm{B}^0\overline{\mathrm{B}}0}^{\mathrm{PB,Charm}}$	$\textit{N}_{\rm Mis}$
# SVD1	37	849	4	4	4	3	6	0
# SVD2	196	5241	12	28	25	19	31	2

$$\begin{split} N_{
m Sig} &= \mathcal{B}(B^0
ightarrow \omega K_S^0) \sum_i (N^i_{
m BB} \epsilon^i_{
m Rec} \eta^i), \ i = [{
m SVD1, SVD2}], \\ \mathcal{B}(B^0
ightarrow \omega K_0^S) &= 2.5 \cdot 10^{-6} \end{split}$$

Free parameters in the fit

- ▶ $\mathcal{BR}(B^0 \to \omega K_S^0)$, \mathcal{A}_{CP} and \mathcal{S}_{CP} ▶ $N_{\alpha \bar{\alpha}}^{1,2}$
- $\blacktriangleright N_{B^0\overline{B}0}^{Charm;1,2}$
- ΔE slope for $q\bar{q}$, $C_{q\bar{q}}^{1,2}(\Delta E)$

Toy MC studies for $B^0 \to \omega K_S^0$

Test the model with Toy MC **Expected number of events**

Expectations for $\mathcal{BR}(B^0 \to \omega K^0)$

Uncertainty 9.2% Error scaled to final data sets Belle (previous): 13% , BaBar: 13% \Rightarrow Our method is better

Pull distribution of $\mathcal{BR}(B^0 \rightarrow \omega K^0)$

No bias, correct error estimation

Study of the decay ${
m B}^0 o \,\omega\,{
m K}^0_{
m S}$ at Belle

Toy MC studies for $\mathcal{A}_{\mathcal{CP}}$ and $\mathcal{S}_{\mathcal{CP}}$

Expectations for \mathcal{A}_{CP}

Uncertainty ± 0.19 Error scaled to final data set Belle (previous): ± 0.24 , BaBar: ± 0.20

Pull distribution of \mathcal{A}_{CP}

No bias, correct error estimation

Expectations for S_{CP}

Uncertainty ± 0.28 Error scaled to final data set Belle (previous): ± 0.38 , BaBar: ± 0.26

Pull distribution of \mathcal{S}_{CP}

No bias, correct error estimation

B Reconstruction

$$B^0 \rightarrow \omega K_S, \ \omega \rightarrow \pi^+ \pi^- \pi^0$$

General selection criteria for the reconstruction

π^+ candidates

▶ $L_{K/\pi} < 0.9$ in order to remove tracks consistent with kaon hypothesis

π^0 candidates

- ▶ 118 $MeV/c^2 < m(\gamma\gamma) < 150 MeV/c^2$, mass fit $\chi^2 < 50$
- ▶ $E_{\gamma} > 50 \ MeV$ in ECL barrel, $E_{\gamma} > 100 \ MeV$ in ECL endcap

K_S candidates

- ▶ "Good K_S" cut
- ▶ 0.482 $GeV/c^2 < m(\pi^+\pi^-) < 0.514 \ GeV/c^2 \ (m(K_S) \pm 16 \ MeV))$

ω candidates

► 0.73
$$GeV/c^2 < m(\pi^+\pi^-\pi^0) < 0.83 \ GeV/c^2 \ (m(\omega) \pm 50 \ MeV))$$

B Reconstruction

B⁰candidates

- $\blacktriangleright~M_{\rm bc} > 5.27~GeV/c^2$ and -0.15 $GeV < \Delta E < 0.1~GeV$
- Best *B* selection: best $M_{\rm bc} = \sqrt{(E_{beam}^{cms})^2 (p_B^{cms})^2}$

Reconstruction efficiency: 13.2% for SVD1 and 16.8% for SVD2 Misreconstruction fraction: 2.3% for SVD1 and 2.4% for SVD2 \sim 230 events expected (118 for previous analysis)

Fit to
$$\Delta E$$
, $\mathcal{F}_{\mathrm{B}\bar{\mathrm{B}}/\mathrm{q}\bar{\mathrm{q}}}$, $m_{3\pi}$, $\mathcal{H}_{3\pi}$, Δt , q

Fit region:

- ▶ $-0.15 \,\mathrm{GeV} < \Delta \mathrm{E} < 0.1 \,\mathrm{GeV}$
- $\blacktriangleright \ -2 < \mathcal{F}_{\mathrm{B}\bar{\mathrm{B}}/\mathrm{q}\bar{\mathrm{q}}} < 2$
- ▶ 0.73 ${\rm GeV/c^2} < m_{3\pi} < 0.83 \, {\rm GeV/c^2}$
- $\blacktriangleright \ -1 < \mathcal{H}_{3\pi} < 1$
- ► $-70 \,\mathrm{ps} < \Delta t < 70 \,\mathrm{ps}$