Young Scientist Workshop July 2012, Ringberg

Germanium Detectors and Natural Radioactivity in food

Lucia Garbini GeDet group

Outline

- \rightarrow Introduction to Germanium detectors
 - radiation detection in semiconductors
 - properties of Germanium detectors

→ Experimental setup

- background measurement
- weak sources
- background reduction

\rightarrow Data analysis

- calibration with KCI salt
- measurement of food rich in Potassium

\rightarrow Conclusions

- summary
- outlook

a) which kind of radiation?

- RADIATION

PHOTONS: produced in the decays of radioactive isotopes

b) what can they do in matter?

We will use TOTAL ABSORPTION EVENTS

Introduction to Germanium detectors

a) which kind of detector? Closed-ended Coaxial eXtended Range Germanium detector

b) how does it work?

- large diode with a reverse bias \rightarrow a POSITIVE outside potential
- radiation goes into the crystal
 - \rightarrow electron-hole pairs
 - \rightarrow under Electric Field
 - electrons go to **n+** contact
 - holes go to p+ contact

How can we use such a detector?

Introduction to Germanium detectors

What can be measured? ENERGY SPECTRA

- Resolution is better than expected from statistics

(revealed on the full energy peak)

 $= \int_{\Delta_{f'},\Delta_{g} \ge \frac{1}{2}t}$

OBSERVED VARIANCE = F*POISSON VARIANCE

→ the total number of **IONIZATION has a constraint** THEY are **not INDEPENDENT** anymore

NO POISSONIAN STATISTICS

First evaluation of the variance

U. Fano, Phys. Rev. 72 (1947) 26

- energy and momentum conservation
- the energy deposited is a FIXED value E₀
 - fluctuating **BUT** not independent variables
 - N_x lattice excitation
 - N_Q charge carriers

ε_i = 2.9 eV E_g=E_i = 0.66 eV E_x = 21 meV

$$\sigma_{i} = \frac{E_{x}}{E_{i}} \sqrt{\frac{E_{0}}{E_{x}} - \frac{E_{i}}{E_{x}}} N_{i} = \sqrt{\frac{E_{0}}{\epsilon_{i}}} \sqrt{\frac{E_{x}}{E_{i}} \left(\frac{\epsilon_{i}}{E_{i}} - 1\right)} = \sqrt{FN_{Q}}$$

<u>Outline</u>

- \rightarrow Introduction to Germanium detectors
 - radiation detection in semiconductors
 - properties of Germanium detectors

→ Experimental setup

- background measurement
- weak sources
- background reduction
- \rightarrow Data analysis
 - calibration with KCl salt
 - measurement of food rich in Potassium

\rightarrow Conclusions

- summary
- outlook

$A_{p} \cdot \Delta_{g} \ge \frac{1}{2} t$

- what can we measure with XtRa?

Photons produced the decay chains of radioisotopes

Two kinds of measurement

Background measurements

everything else but a source

NATURAL RADIOACTIVITY

- cosmic radiation
- terrestrial sources
 - potassium
 - carbon
 - uranium and thorium (decay chain elements)
- human produced source
 - Cs from nuclear explosions

Source measurements

1) EASY

- strong sources
- not present in natural background

2) DIFFICULT

- weak sources
- present in natural background

Energy spectra \rightarrow IDENTIFY RADIOISOTOPES \rightarrow QUANTIFY THEIR ABUNDANCE

- cannot measure a source without background

- bkg SUBTRACTION is needed... but is it good enough for weak sources?

Weak Sources: Potassium in food

- each food sample contains Potassium
- 100 g of strawberry contains 153 mg of K and 0.018 mg of ⁴⁰K
 - small quantity of ${}^{40}K \rightarrow \text{ small activity expected}!!$

expected counts from the weak source in 1 hour \rightarrow 20 counts expected counts from the bkg radiation in 1 hour \rightarrow 1000 counts

Signal is less than a fluctuation of the bkg!!! WE CANNOT SEE IT!!

How can we reduce the counts of background?

- shielding the detector from natural radiation

LEAD SHIELD \rightarrow high density and high Z can reduce the bkg!

Background reduction due to the lead castle

Ap. Dg>th

Outline

- \rightarrow Introduction to Germanium detectors
 - radiation detection in semiconductors
 - properties of Germanium detectors

→ Experimental setup

- bkg measurement
- strong and weak sources
- background reduction

\rightarrow Data analysis

- calibration with KCI salt
- measurement of food rich in Potassium

\rightarrow Conclusions

- summary
- outlook

with this experimental setup we can measure also WEAK SOURCES!
 → we can measure the Potassium content in different food sample

This are values that you can find in literature... but are they true??

Food	Potassium content in 1 pound [g]	
Strawberry	0.76	
Sugared almonds	1.27	
White chocolate	1.43	
kiwi	1.56	
Banana	2.18	
Hazelnuts	2.5	
Dry Prunes	3.4	
Raisins	3.74	
Pistachios	5.125	
Dry Apricots	9.25	

Chocolate	Potassium content in 1 pound [g]
Dark Chocolate 50% cacao	3.81
Dark Chocolate 70% cacao	5.334
Dark Chocolate 85% cacao	6.477

We can do it but before...we need to CALIBRATE the detector!

Check the detector response to a WELL KNOWN quantity of K

Known value of K : Spectrum_A = (nknown value of K): Spectrum_B

Define the experimental settings:

- 1) position of the plastic container:
 - vertical
 - horizontal

2) relative distance between source and detector

MAXIMIZING THE GEOMETRICAL ACCEPTANCE

$$a^g = \frac{N_{measured}}{N_{expected}}$$

Where: $N_{measured}$ are obtained directly from the measured spectrum $N_{expected}$ can be calculated from the activity of the sample

Activity = number of decays per second

Directly from the exponential decay law for N_0 radioisotopes:

$$A = \frac{D(t)}{t} = N_0 \cdot \frac{\ln 2}{t_{\frac{1}{2}}}$$

if we have some amount m_{I} of radioisotope it will be:

$$A = \frac{D(t)}{t} = \left(\frac{m_I}{m_I^A} \cdot N_A\right) \cdot \frac{\ln 2}{t_{\frac{1}{2}}}$$

Potassium Chloride calibration salt

- mass of the salt sample
- impurities
- mass of Potassium in KCI
- isotopic abundance for ⁴⁰K
- atomic mass of ⁴⁰K

$$m_{40K} = m_{KCl} \cdot (1 - i_{tot}) \cdot m_K^{KCl} \cdot a_{40K}$$

$$A_{1460} = 141.9 \ Bq$$

3000

<u>Data analysis</u>

- all food samples weighed
- prepared in the same plastic container
 - → try to have the **same acceptance**
- self absorption neglected

- plastic container always put vertical
- same relative position of the source and the detector

Comparison of spectra from different food sample rich in potassium

Comparison of spectra from different chocolate bars

To be more quantitative:

- we can use the already known proportion!!

Known value of K : Spectrum_A = (unknown value of K): Spectrum_R

$$m_{K}^{meas} = \frac{A_{peak}^{food}}{A_{peak}^{KCl}} \cdot m_{k}^{KCl}$$

Potassium mass in food sample: known and measured value comparison

Just to summarize...

- built a shield with high bkg reduction power
- good performances of the detector with weak sources like strawberries
- measured Potassium content of 13 different food samples
- figured out a **non linear behaviour of the Potassium** content in different cacao percentages choco bars
 - Do they put less cacao?
 - Do they use different kind of cacao?

Outlook:

- simulation will be done to take into account self absorption

 maybe... choco bars measurement will be repeated with different chocolate brands

BACK UP SLIDES

Introduction to Germanium detectors

- Signal formation can be described with events:

- with low probability
- independent one from each other
- with an avarage rate which doesn't change in the period of interest

EXPECTED VARIANCE = POISSON VARIANCE

OBSERVED VARIANCE = F*POISSON VARIANCE with F<1

Physical reason: ENERGY and MOMENTUM CONSERVATION

$$\mathcal{E}_{i} = 2.9 \text{ eV}$$

$$E_{g} = E_{i} = 0.66 \text{ eV}$$
- ionization => electron-hole pairs
- lattice exitation => phonons

$$E_{0} = E_{i}N_{i} + E_{x}N_{x}$$

$$dE_{0} = \frac{\partial E_{0}}{\partial N_{x}}dN_{x} + \frac{\partial E_{0}}{\partial N_{i}}dN_{i} = 0$$

$$E_{x}\sigma_{x} = E_{i}\sigma_{i}$$

$$\sigma_{i} = \frac{E_{x}}{E_{i}}\sqrt{\frac{E_{0}}{E_{x}} - \frac{E_{i}}{E_{x}}N_{i}} = \sqrt{\frac{E_{0}}{\epsilon_{i}}}\sqrt{\frac{E_{x}}{E_{i}}\left(\frac{\epsilon_{i}}{E_{i}} - 1\right)} \neq \sqrt{FN_{Q}}$$

Activity = number of decays per second

- from the **exponential decay law**: if we have initially N₀ radioisotopes $D(t) = N_0 - N(t) = N_0 \left(1 - e^{-\frac{t}{\tau}}\right)$

is the number of decays after a time t

- if we use the half life $t_{_{1/2}}$ and expand in Taylor series we can obtain

$$e^{-\frac{t}{\tau}} = 1 - \frac{t}{\tau} = 1 - \frac{t \cdot \ln 2}{t_{\frac{1}{2}}}$$

- if we have a certain mass of a radioactive isotope m

$$A = \frac{D(t)}{t} = \left(\frac{m_I}{m_I^A} \cdot N_A\right) \cdot \frac{\ln 2}{t_{\frac{1}{2}}}$$

For a Potassium Chloride (KCI) sample :

- of mass m_{kCl}
- with a cenrtain amount of impurities i_{tot} we will have:

$$m_{40}{}_{K} = m_{KCl} \cdot (1 - i_{tot}) \cdot m_{K}^{KCl} \cdot a_{40}{}_{K}$$

$$A_{1460} = 141.9 \ Bq$$

Name: ²²⁸₉₀Th Neutrons: **138** Activity:

Decay chain:

Isomeric transition with **photon emission**

Name: ⁶⁰₂₇Th Neutrons: **33** Activity:

 $\Delta_{p} \cdot \Delta_{q} \geq \frac{1}{2} t$

We can use strong sources to know the detector....

Fano Factor Measurement

 \rightarrow energy resolution depends on ENERGY

$$FWHD_{tot}^2 = (2.35)^2 F \varepsilon E + b^2$$

→ scanning all the energy range in the ²²⁸Th spectrum - choosing good peaks

238 510 583 727 860	keV keV keV keV keV	²¹² Pb 208TI ²⁰⁸ TI ²¹² Bi ²⁰⁸ TI
727	ko\/	212 Ri
860		208 T I
000		208 TI
1002		208 TI
1620		212 D i
2614		208 T I
2014	ĸev	200 []

fit with a Gaussian=> exract the RMS

check the dependence on energy

Data analysis

To be compared with the theoretical value: F = 0.13 in Ge

