NOTHING NEW ON THE **B** PHYSICS FRONT?

Frederik Beaujean

July 24 2012 / IMPRS@Ringberg castle

OUR GOAL

- Higgs confirmed(?), but where is new physics?
- LHCb looking for new reactions in flavor sector

OUR GOAL

- Higgs confirmed(?), but where is new physics?
- LHCb looking for new reactions in flavor sector

OUR GOAL

- Higgs confirmed(?), but where is new physics?
- LHCb looking for new reactions in flavor sector

RARE B DECAYS

FLAVOUR CHANGES: ONLY VIA CHARGED CURRENTS AND WEAK FORCE

$$U_i = \{u, c, t\}: Q_U = +2/3$$

 $D_j = \{d, s, b\}: Q_D = -1/3$

$$\mathcal{L}_{\text{CC}} = \frac{g}{\sqrt{2}} \left(\bar{u}, \bar{c}, \bar{t} \right) \left(\begin{array}{ccc} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{vd} & V_{to} & V_{tb} \end{array} \right) \gamma^{\mu} P_L \left(\begin{array}{c} d \\ s \\ b \end{array} \right) W_{\mu}^+$$

FLAVOUR CHANGING NEUTRAL CURRENTS IN SM

Only at loop level

Partons: $b \rightarrow s\ell^+\ell^-$: Hadrons: $B \rightarrow K^{(*)}\ell^+\ell^-$

- no suppression of contributions beyond SM (BSM) wrt SM itself
 - \Rightarrow indirect search for heavy particles up to $\mathcal{O}(100 \text{ TeV})$

requires high precision, experimentally and theoretically

EFFECTIVE THEORY

OPERATOR MATCHING

DECOUPLING OF HEAVY FROM LIGHT PARTICLES

- ullet short distance: effective coupling (Wilson coefficient) \mathcal{C}_i
- long distance: effective operator O_i

$$\mathcal{L}_{\mathrm{eff}}\left(\mu_{b}\right) = \mathcal{L}_{\mathrm{QED} \times \mathrm{QCD}}\left(u, d, s, c, b, \, e, \mu, \tau\right)$$

$$+ \frac{4G_F}{\sqrt{2}} V_{\text{CKM}} \sum_{\text{SM}} (\mathcal{C}_i + \Delta \mathcal{C}_i) \mathcal{O}_i + \sum_{\text{NP}} \mathcal{C}_j \mathcal{O}_j \end{(\cdot ???)}$$

GLOBAL FIT

OUR GOAL

- Assume no new operators, $C_i \in \mathbb{R}$
- Extract C_{7,9,10} and check for new physics

BAYES' THEOREM

posterior ∝ likelihood × prior

$$P(\mathcal{C}_i, \vec{v}|D) = \frac{P(D|\mathcal{C}_i, \vec{v})P(\mathcal{C}_i, \vec{v})}{Z}$$

OUR APPROACH

- 59 observations from BaBar, Belle, CDF, LHCb \Rightarrow D
- theory uncertainty \Rightarrow 28 nuisance parameters $\vec{\nu}$
- is C_i^{SM} near best-fit point?
- remove nuisance parameters $P(C_i|D) = \int d\vec{v} P(C_i, \vec{v}|D)$

Frederik Beaujean July 24 2012 5 / 21

Example: $B \to K^*(\to K\pi)\ell^+\ell^-$ observables

q	² /GeV ²	[1, 6]	[14, 16]	[> 16]
	3/10 ⁻⁷	1.49+0.45	1.05 ^{+0.29} _{-0.26}	2.04 ^{+0.27} _{-0.24}
	A_{FB}	$-0.26^{+0.30}_{-0.27}$	$-0.70^{+0.22}_{-0.16}$	$-0.66^{+0.16}_{-0.11}$

TABLE: Belle 2009 (no systematics)

Three body decay with vector meson K^*

- $\Gamma = \Gamma(\theta_I, \theta_K, \phi, q^2), q^2 = (p_{\ell^+} + p_{\ell^-})^2 \Rightarrow \mathcal{O}(10)$ angular observables
- BaBar, Belle: $d\Gamma/d\theta_{I,K}$
- LHCb first to fully explore angular distribution; fall 2012?

DISCRETE SYMMETRIES

- typical dependence: $\mathcal{B} \propto \mathcal{C}_i \mathcal{C}_i$
- Invariance under $C_i \rightarrow -C_i, C_7 \rightarrow -C_{-7}$

Frederik Beaujean July 24 2012 6 / 21

NUMERICAL CHALLENGE

- Marginalization: draw samples from posterior
- Multimodal, complicated posterior \Rightarrow single evaluation $\mathcal{O}(0.2\,\mathrm{s})$
- 30D ⇒ curse of dimensionality
- Try with Markov chains (local random walk)

Frederik Beaujean July 24 2012 7 / 21

http://www.flickriver.com/photos/tags/cricetuscricetus/interesting/

Frederik Beaujean July 24 2012 8 / 21

Frederik Beaujean July 24 2012 9 / 21

PROBLEMS

- hamsters stay at first food encountered
- #hamsters # size of food pile

Frederik Beaujean July 24 2012 10 / 21

Which of the four is important?

Frederik Beaujean July 24 2012 11 / 21

IMPORTANCE SAMPLING

INTEGRATION WITH IMPORTANCE SAMPLING

$$\int d\vec{\theta} P(\vec{\theta}) = \int d\vec{\theta} \frac{P(\vec{\theta})}{q(\vec{\theta})} q(\vec{\theta}) = \mathbb{E}_q \left[\frac{P}{q} \right]$$
$$\approx \frac{1}{N} \sum_{i=1}^{N} \frac{P(\vec{\theta}_i)}{q(\vec{\theta}_i)} = \frac{1}{N} \sum_{i=1}^{N} w_i, \ \vec{\theta}_i \sim q(\vec{\theta})$$

Maximum efficiency if P = q. How to choose a good proposal q?

POPULATION MONTE CARLO (PMC) CAPPÉ (2008), KILBINGER (2009)

- Assume mixture density $q(\vec{\theta}) = \sum_{j=1}^{m} \alpha_j q_j(\vec{\theta} \mid \vec{\mu}, \Sigma)$, α : weight, q_j : Gauss, Student-T
- Draw N samples $\vec{\theta}_i$ from q and compute w_i
- Make $q \rightarrow P$ by updating $\alpha_j, \vec{\mu}_j, \Sigma_j$

Frederik Beaujean July 24 2012 12 / 21

INITIAL PROPOSAL

- bad initial proposal in 30D ⇒ most components die out $\alpha_1 = 1, \ \alpha_i = 0, i > 1$
- hamsters know where to go
- split chain of length N into patches of length L
- patch mean and covariance $\Rightarrow q_i(\vec{\mu}, \Sigma)$

Frederik Beaujean July 24 2012 13 / 21

HIERARCHICAL CLUSTERING GOLDBERGER, ROWEIS (2004)

EXAMPLE

single chain, N = 60000, L = 1000, burn in = $6000 \Rightarrow K = 54$ components. With 50 chains \Rightarrow ???

GOAL: CONDENSE INFORMATION

- Have mixture with M components $f(\vec{\theta}) = \sum_{l=1}^{M} \beta_l f_l(\vec{\theta} | \vec{\mu}_l, \Sigma_l)$,
- Want mixture with $m \ll M$ components $q(\vec{\theta}) = \sum_{i=1}^{m} \alpha_i q_i(\vec{\theta} \mid \vec{\mu}_i, \Sigma_i)$
- Find q "closest" to to f

Frederik Beaujean July 24 2012 14 / 21

THE BIG PICTURE

- cope with multimodality
- massive parallelization ⇒ run over night

Frederik Beaujean July 24 2012 15 / 21

ALGORITHM AT WORK: GLOBAL FIT

Initial proposal from Markov chains

Frederik Beaujean July 24 2012 16 / 21

ALGORITHM AT WORK: GLOBAL FIT

After first PMC update: two modes suppressed by $10^9 - 10^{11}$

Frederik Beaujean July 24 2012 17 / 21

ALGORITHM AT WORK: GLOBAL FIT

Converged after 10 PMC updates

Frederik Beaujean July 24 2012 18 / 21

Physics result: Wilson coefficients

 2σ contours of $B \to K^* \gamma$ with

1 and 2σ contours with all data.

Standard Model: •

MODEL COMPARISON

MODELS

- **1** SM \equiv fixed C, variable $\vec{\nu}$
- 2 extended model $M \equiv \text{variable } C, \vec{\nu}$

POSTERIOR ODDS

$$\frac{P(SM|D)}{P(M|D)} = \frac{P(D|SM)}{P(D|M)} \cdot \frac{P(SM)}{P(M)} \approx 800 \cdot \frac{P(SM)}{P(M)}$$

⇒ Occam's razor favors simpler model

Frederik Beaujean July 24 2012 20 / 21

Conclusion

- Improved Monte Carlo method
- No signs of new physics in rare B decays

Frederik Beaujean July 24 2012 21 / 21