Top Mass Measurement in the Fully Hadronic $t\bar{t}$ Channel With The ATLAS Detector

Stefanie Adomeit

LMU Munich

Young Scientists Workshop Ringberg Castle, July 2012

The ATLAS Detector

Introduction: The Fully Hadronic *tī* Decay Channel

Top Quark Production At The LHC

top anti-top production:

- $\sigma_{t\bar{t}} \approx 164 \text{ pb} (@ 7\text{TeV}) \Rightarrow \text{good statistics}$
- gluon-gluon fusion dominant production process

single top production:

Top Anti-Top Decay Channels

- $\bullet \ \ \mathsf{short} \ \ \mathsf{lifetime} \to \mathsf{no} \ \mathsf{hadronization}$
- SM prediction: top exclusively decays into b-quark and W boson
- consecutive W-decay: leptonically (lepton + corresponding neutrino) or hadronically (quark anti-quark pair)
- \Rightarrow 3 decay channels: allssshadronic, single-lepton, dilepton

The Fully Hadronic $t\bar{t}$ Decay Channel

Jet Reconstruction

jets are reconstructed using the $anti-k_t$ clustering algorithm:

- based on min(p_i⁻², p_j⁻²) scaled distance measurement Δ²_{ij} = (y_i - y_j)² + (φ_i - φ_j)²
- combine hardest objects first until all objects are separated by ΔR_{ij} > R (ATLAS standard: R=0.4/0.6)

[Cacciari, Salam, Soyez, JHEP 0804:063,2008]

Jet Reconstruction

jets are reconstructed using the $anti-k_t$ clustering algorithm:

- based on min(p_i⁻², p_j⁻²) scaled distance measurement Δ²_{ij} = (y_i - y_j)² + (φ_i - φ_j)²
- combine hardest objects first until all objects are separated by ΔR_{ij} > R (ATLAS standard: R=0.4/0.6)

[Cacciari, Salam, Soyez, JHEP 0804:063,2008]

CALORIMETER JETS

starting from topological clusters:

- group of calorimeter cells with a signal-to-noise ratio above a certain threshold
- contain a variable number of cells, no fixed shape

Jet Reconstruction

jets are reconstructed using the $anti-k_t$ clustering algorithm:

- based on min(p_i⁻², p_j⁻²) scaled distance measurement Δ²_{ij} = (y_i - y_j)² + (φ_i - φ_j)²
- combine hardest objects first until all objects are separated by ΔR_{ij} > R (ATLAS standard: R=0.4/0.6)

[Cacciari, Salam, Soyez, JHEP 0804:063,2008]

CALORIMETER JETS

starting from topological clusters:

- group of calorimeter cells with a signal-to-noise ratio above a certain threshold
- contain a variable number of cells, no fixed shape

PARTICLE JETS starting from stable particles

- particles with lifetime above 10 ps excluding muons and neutrinos
- in Monte-Carlo samples

JES Calibration And JES Uncertainty

JES CALIBRATION:

correct kinematics of calorimeter jets to the values of the corresponding truth jet to compensate for

- non-compensating calorimeters
- inactive material
- out-of-cone effects

 \Rightarrow calibration constants (evaluated based on MC studies) to restore the JES

JES Calibration And JES Uncertainty

JES CALIBRATION:

correct kinematics of calorimeter jets to the values of the corresponding truth jet to compensate for

- non-compensating calorimeters
- inactive material
- out-of-cone effects

 \Rightarrow calibration constants (evaluated based on MC studies) to restore the JES

JES UNCERTAINTY = uncertainty on calibration constants:

- 2010 uncertainty: MC based studies (uncertainties on detector simulation, event modelling in Monte Carlo generators,...)
 <2.5% for central jets (pT =100 GeV),
 <9 (14)% in endcap (forward) region
- 2011 uncertainty: reduced uncertainty thanks to in-situ measurements

- 6 quarks from decaying $t\bar{t}$ pair ightarrow 6 jets
- ISR/FSR: additional jets

signature: \geq 6 Jets

top mass measurement in the allhadronic channel: challenges \Rightarrow analysis steps

- 6 quarks from decaying $t\bar{t}$ pair ightarrow 6 jets
- ISR/FSR: additional jets

signature: \geq 6 Jets

top mass measurement in the allhadronic channel: challenges \Rightarrow analysis steps

- Iarge background due to QCD multijet production
 - \rightarrow background modelling
 - \rightarrow separation signal \leftrightarrow background

- 6 quarks from decaying $t\bar{t}$ pair ightarrow 6 jets
- ISR/FSR: additional jets

signature: \geq 6 Jets

top mass measurement in the allhadronic channel: challenges \Rightarrow analysis steps

- Iarge background due to QCD multijet production
 - \rightarrow background modelling
 - \rightarrow separation signal \leftrightarrow background
- arge combinatorial background: 6 jets result in 90 possible ways of assigning jets to partons
 - \rightarrow use kinematic likelihood fit to reconstruct allhadronic top quarks

- 6 quarks from decaying $t\bar{t}$ pair ightarrow 6 jets
- ISR/FSR: additional jets

signature: \geq 6 Jets

top mass measurement in the allhadronic channel: challenges \Rightarrow analysis steps

- Iarge background due to QCD multijet production
 - \rightarrow background modelling
 - \rightarrow separation signal \leftrightarrow background
- arge combinatorial background: 6 jets result in 90 possible ways of assigning jets to partons
 - \rightarrow use kinematic likelihood fit to reconstruct allhadronic top quarks

Sensitive to systematic uncertainties e.g. jet energy scale → evaluate the top quark mass via 2D template method

1. QCD Multijet Background

QCD-Multijet Background: Modelling

QCD Multijet Production:

- parton pair (except tt) from hard scatter
- additional partons from gluon radiation, gluon splitting

QCD-Multijet Background: Modelling

QCD Multijet Production:

- parton pair (except tt) from hard scatter
- additional partons from gluon radiation, gluon splitting

[©]Monte-Carlo based modelling of QCD multijet production:

final states with seven or more partons cannot be simulated accurately (production matrix elements not available)

QCD-Multijet Background: Modelling

QCD Multijet Production:

- parton pair (except tt) from hard scatter
- additional partons from gluon radiation, gluon splitting

[©]Monte-Carlo based modelling of QCD multijet production:

final states with seven or more partons cannot be simulated accurately (production matrix elements not available)

©however, we have lots of data and the mulijet production cross section is rather large...

 \rightarrow model background based on a selected data sample dominated by QCD multijet production

Data Driven QCD-Multijet Background Modelling...

...an example: EVENT MIXING

Data Driven QCD-Multijet Background Modelling...

...an example: EVENT MIXING

add jets from donour events to acceptor events if ...

- Initial states in the state of the state
- 2 there is no overlap between donour and acceptor event jets

Data Driven QCD-Multijet Background Modelling...

...an example: EVENT MIXING

add jets from donour events to acceptor events if ...

- Initial states in the state of the state
- 2 there is no overlap between donour and acceptor event jets

\Rightarrow multijet events with n \ge 6 jets \odot

Separating $t\bar{t}$ From QCD Multijet Events

- b-jet identification algorithms (see next slide): require exactly 2 b-tagged jets
- different b-production in signal and background: large fraction of b-jets in multijet events due to gluon splitting → collinear emission
- W-mass window: check dijet invariant mass of light jets from W-decay
- larger fraction of gluon jets in multijet events: exploit the different properties of light quark and gluon initiated jets (jet width, number of jet constituents)

• ..

b-Jet Identification

long lifetime of b-flavoured hadrons

- significant flight path length L of b-hadrons
- measurable secondary vertex
- measurable impact parameters of tracks from b-hadron decay products
- \rightarrow spatial taggers

semi-leptonic b-hadron decays

- tag soft leptons (from b-hadron decay) in the jets
- \rightarrow soft lepton taggers

2. Finding Jet Parton Pairs -Kinematic Likelihood Fit

ASSUMPTIONS:

MODEL: allhadronic $t\bar{t}$ event topology

- 4 light quark jets from W-decay
- 2 b-jets from $t\bar{t}$ decay

ASSUMPTIONS:

 W mass is distributed according to a Breit-Wigner function around a pole mass of M_W = 80,4 GeV/c2

MODEL: allhadronic $t\bar{t}$ event topology

- 4 light quark jets from W-decay
- 2 b-jets from $t\bar{t}$ decay

ASSUMPTIONS:

- W mass is distributed according to a Breit-Wigner function around a pole mass of M_W = 80,4 GeV/c2
- top mass is distributed according to a Breit-Wigner function; the top pole mass is treated as fit parameter

MODEL: allhadronic $t\bar{t}$ event topology

- 4 light quark jets from W-decay
- 2 b-jets from $t\bar{t}$ decay

ASSUMPTIONS:

- W mass is distributed according to a Breit-Wigner function around a pole mass of M_W = 80,4 GeV/c2
- top mass is distributed according to a Breit-Wigner function; the top pole mass is treated as fit parameter
- jet energies are measured with uncertainty σ and are treated as additional fit parameters \rightarrow use transfer fucntions which map the parton energy to the measured (calibrated) jet energy

∜

MODEL: allhadronic $t\bar{t}$ event topology

- 4 light quark jets from W-decay
- 2 b-jets from $t\bar{t}$ decay

ASSUMPTIONS:

- W mass is distributed according to a Breit-Wigner function around a pole mass of M_W = 80,4 GeV/c2
- top mass is distributed according to a Breit-Wigner function; the top pole mass is treated as fit parameter
- jet energies are measured with uncertainty σ and are treated as additional fit parameters → use transfer fucntions which map the parton energy to the measured (calibrated) jet energy
 ↓
 ↓

 $L = BW\{m(q_1, q_2)|m_W, \Gamma_W\} \cdot BW\{m(q_4, q_5)|m_W, \Gamma_W\} \cdot BW\{m(q_1, q_2, q_3)|m_{top}, \Gamma_{top}\} \cdot BW\{m(q_4, q_5, q_6)|m_{top}, \Gamma_{top}\} \cdot \prod_{i=1}^{6} W(\tilde{E}_i, E_i)$

 \Rightarrow include b-tagging information: veto permutations with b-jets on the position of light quarks from W decay

 $L = BW\{m(q_1, q_2)|m_W, \Gamma_W\} \cdot BW\{m(q_4, q_5)|m_W, \Gamma_W\} \cdot BW\{m(q_1, q_2, q_3)|m_{top}, \Gamma_{top}\} \cdot BW\{m(q_4, q_5, q_6)|m_{top}, \Gamma_{top}\} \cdot \prod_{i=1}^{6} W(\tilde{E}_i, E_i)$

 \Rightarrow include b-tagging information: veto permutations with b-jets on the position of light quarks from W decay

$$L = BW\{m(q_1, q_2)|m_W, \Gamma_W\} \cdot BW\{m(q_4, q_5)|m_W, \Gamma_W\} \cdot BW\{m(q_1, q_2, q_3)|m_{top}, \Gamma_{top}\} \cdot BW\{m(q_4, q_5, q_6)|m_{top}, \Gamma_{top}\} \cdot \prod_{i=1}^{6} W(\tilde{E}_i, E_i)$$

Monte-Carlo based performance studies:

- right jet to parton assignment in 80% of all events when including b-tagging veto
- good agreement between reconstructed and true kinematical variables of top quarks

Measuring
The Top
Quark Mass
Building
Templates

Measuring The Top Quark Mass: Building 1D Templates

 \Rightarrow parameterize m_{top}^{reco} as a function of m_{top}

 $\begin{array}{l} \mathsf{Gaussian}(p_0, p_1, p_2) + \\ \mathsf{Landau}(p_3, p_4, p_5) \end{array}$

Measuring The Top Quark Mass: Building 1D Templates

 \Rightarrow parameterize m_{top}^{reco} as a function of m_{top}

Stefanie Adomeit (LMU Munich) Top Mass Measurement in the Allhadronic $t\bar{t}$ Channel

Measuring The Top Quark Mass And The Jet Energy Scale: Building 2D Templates

 \Rightarrow parameterize m_{top}^{reco} as a function of m_{top} and Δ JES

 $Gaussian(p_0, p_1, p_2) + Landau(p_3, p_4, p_5)$

 $p_i = p_i(m_{top}, \Delta JES)$

Measuring The Top Quark Mass And The Jet Energy Scale: Building 2D Templates

 \Rightarrow parameterize m_{top}^{reco} as a function of m_{top} and Δ JES

 $Gaussian(p_0, p_1, p_2) + Landau(p_3, p_4, p_5)$

 $p_i = p_i(m_{top}, \Delta JES)$

 \Rightarrow parameterize m_W^{reco} as a function of Δ JES

 $Gaussian(p_0, p_1, p_2) + Gaussian(p_3, p_4, p_5)$

 $p_i = p_i(\Delta JES)$

Stefanie Adomeit (LMU Munich) Top Mass Measurement in the Allhadronic $t\bar{t}$ Channel July 23 2012 20 / 23

Building 2D Templates

Top Mass Measurement in the Allhadronic $t\bar{t}$ Channel

July 23 2012 21 / 23

Measuring The Top Quark Mass Using Templates

- signal p.d.f.s: $P_s^{m_{top}^{reco}}(m_{top}^{reco}|m_{top}, \Delta JES), P_s^{m_W^{reco}}(m_W^{reco}|\Delta JES)$ (previous slide)
- background p.d.f.s: $P_b^{m_{top}^{reco}}(m_{top}^{reco})$, $P_b^{m_W^{reco}}(m_W^{reco})$, independent of m_{top} and Δ JES (data driven estimate of QCD background)

 \Rightarrow find m_{top} and ΔJES which best reproduce the observed distribution of m_{top}^{reco} and m_W^{reco} in data

Measuring The Top Quark Mass Using Templates

- signal p.d.f.s: $P_s^{m_{top}^{reco}}(m_{top}^{reco}|m_{top}, \Delta JES), P_s^{m_W^{reco}}(m_W^{reco}|\Delta JES)$ (previous slide)
- background p.d.f.s: $P_b^{m_{top}^{reco}}(m_{top}^{reco})$, $P_b^{m_W^{reco}}(m_W^{reco})$, independent of m_{top} and Δ JES (data driven estimate of QCD background)

\Rightarrow find m_{top} and $\Delta {\rm JES}$ which best reproduce the observed distribution of m_{top}^{reco} and m_W^{reco} in data

recent results on the measurement of the top quark mass in the allhadronic channel:

• 2D: arXiv:1112.4891v2, submitted to Phys. Lett. B $\rightarrow m_{top} = 172.5 \pm 1.4 \text{ (stat)} \pm 1.0 \text{(JES)} \pm 1.1 \text{(syst)} \text{ GeV/c}^2$

• 1D: ATLAS-CONF-2012-030

$$ightarrow \mathit{m_{top}} = 174.9 \pm 2.1$$
 (stat) \pm 3.8 (syst) GeV/c²

22 / 23

Summary

fully hadronic $t\bar{t}$ decay channel provides good statistics due to

- **1** relatively high $t\bar{t}$ production cross section
- large allhadronic branching ratio

when measuring the allhadronic top mass one needs to get a handle on...

- the QCD background:
 - \rightarrow data driven modelling

 \rightarrow finding efficient cuts in order to separate signal from background events

- \bullet the jet-to-parton assignment \rightarrow kinematic likelihood fit
- \bullet the systematic uncertainties \rightarrow in-situ measurement of light-JES via 2D template method