

IMPRS/GK YSW at Ringberg Castle July 23rd 2012

The Top Quark Mass in the Dilepton Channel

Andreas Alexander Maier

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Top Quarks Pairs at LHC

The LHC serves as a top quark factory

•
$$\sigma_{t\bar{t}}(7TeV) = 164.6 \stackrel{+11.4}{_{-15.7}} pb$$

2011 dataset: ~800 000 top pair events (4.7 fb⁻¹)

Top Quarks Pairs at LHC

The LHC serves as a top quark factory

•
$$\sigma_{t\bar{t}}(7TeV) = 164.6 \stackrel{+11.4}{_{-15.7}} pb$$

2011 dataset: ~800 000 top pair events (4.7 fb⁻¹)

ATLAS Measurements

ATLAS publications: up to now just lepton + jets, all jets
 Growing interest in the dilepton channel

Multipurpose detector covering almost the full solid angle
 Analyzing pp collisions at LHC: 4.7 fb⁻¹ in 2011

Multipurpose detector covering almost the full solid angle
 Analyzing pp collisions at LHC: 4.7 fb⁻¹ in 2011

Multipurpose detector covering almost the full solid angle
 Analyzing pp collisions at LHC: 4.7 fb⁻¹ in 2011

Selection Cuts

- ² 2 oppositely charged isolated leptons with high p_{τ} (no τ)
- $\space{-2.5}$ High missing transverse energy E_T^{miss} caused by two neutrinos
- 2 jets identified as originating from a b quark
- Additional cuts to reduce background
 - \rightarrow Expected background O(5 %)¹ \rightarrow up to now: signal only analysis

ATLAS-CONF-2011-108

Event Reconstruction

•6 final four-vectors $(E, \vec{p}) \rightarrow$ 24 parameters Available information: (charged leptons) 2 x 4 2 x 4 (b-quarks from b-jets) 2 (E_T^{miss}) (neutrino masses) 2 +(W masses) 2 + (equality of t-quark masses) 1 +23

Problem: Underconstrained kinematics!

μ

 e^+

I Investigated the Following Solutions

Scan all possible values for unknown variables:

Neutrino Weighting Method: event weight as estimator Scan over trial m_{top} and neutrino z-direction

Do not fully reconstruct:

m_{Ib} **Method**: invariant mass of lepton + b-jet system

- A new method: Use unfolded distributions (no detector effects)
- Compare with NLO calculations
- Cooperation with the Theory 2 group at MPP

 m_{T_2} **Method**: transverse mass of the t-quark

- Used for decays with 2 invisible products (e.g. SUSY searches¹)
- Scan transverse neutrino momenta $p_x^{\nu(1)}, p_y^{\nu(1)}$.
- This allows the calculation of m_{T2} observable for every assumption

The m_{T2} Method

• Scan $p_x^{\nu(1)}, p_y^{\nu(1)}$. $\vec{p}_T^{\nu(2)}$ is then constrained by $\vec{p}_T^{\nu(1)} + \vec{p}_T^{\nu(2)} = E_T^{miss}$ • Definition¹: $m_{T2} = \min_{\vec{p}_T^{(1)}, \vec{p}_T^{(2)}} \left[\max\left[m_T^t(m_\nu, \vec{p}_T^{\nu(1)}), m_T^{tbar}(m_\nu, \vec{p}_T^{\nu(2)}) \right] \right]$ with: $m_T(m_\nu, \vec{p}_T^{\nu(i)}) = \sqrt{m_{lb}^2 + m_\nu^2 + 2(E_T^{lb}E_T^{\nu(i)} - \vec{p}_T^{lb} \cdot \vec{p}_T^{\nu(i)})}$

m_{T2} distribution has a cutoff at m_{top} (transverse mass)

¹Phys.Lett.B463:99-103,1999

Change of Distributions with m_{top}

Using MC samples with different m_{top} as input

The Separate Fit

The Template Method

- Construct the template fit functions
 - Fit distributions separately for each m_{top}
 - Parameters approximately linear in m_{top}:

 $p_i(m_{top}) = a_i \cdot m_{top} + b_i \qquad i \in \{0, ..., 5\}$

- Get a, and b, from combined fit
- Fit functions ready for use:

$$f(p_i(m_{top}); m_{T2}) = f(m_{top}; m_{T2})$$

Now we have a function with

- m_{top} as the only free parameter
- Strong dependence on m_{top} (position <u>and</u> shape)
- Fit to a distribution yields most probable value for m_{top}

Method Validation

one pseudoexperiment

Perform pseudoexperiments: Analyze many times samples with known m_{top}^{in}

- Draw random histograms from the same histograms used to create the template fit functions (pseudodata)
- Determine m_{top}^{out} by applying the template method for each histogram

Validate the method

- Check agreement of m_{top}^{in} and m_{top}^{out}
- Get statistical fluctuation from m_{top}^{out}

Pseudoexperiments for 4.7 fb⁻¹

Central value of m_{top} (2011 ATLAS data)

¹no background

Evaluate systematic uncertainties

- Analyse distributions varied by systematic effect
- Difference in m_{top}^{out} as estimate of the systematic effect

Systematic uncertainty ¹ [GeV]	m _{T2}
Data Statistics	0.5
Signal MC generator	0.2
Hadronisation	0.9
ISR and FSR	0.8
Jet Energy Scale	1.8
b-Jet Energy Scale	1.8
Total Systematic Uncertainty	2.8
Total Uncertainty	2.8

¹no background, just systematic effects shown here, ATLAS work in progress

Difference in m_{top}^{out} using two different MC generators

MC@NLO vs. POWHEG both using HERWIG

Systematic uncertainty ¹ [GeV]	m _{T2}
Data Statistics	0.5
Signal MC generator	0.2
Hadronisation	0.9
ISR and FSR	0.8
Jet Energy Scale	1.8
b-Jet Energy Scale	1.8
Total Systematic Uncertainty	2.8
Total Uncertainty	2.8

Ar Ag≥i≴

¹no background, just systematic effects shown here, ATLAS work in progress

Difference in m_{top}^{out} using two different hadronisation programs

Pythia vs. HERWIG both using POWHEG

Systematic uncertainty ¹ [GeV]	m _{T2}
Data Statistics	0.5
Signal MC generator	0.2
Hadronisation	0.9
ISR and FSR	0.8
Jet Energy Scale	1.8
b-Jet Energy Scale	1.8
Total Systematic Uncertainty	2.8
Total Uncertainty	2.8

¹no background, just systematic effects shown here, ATLAS work in progress

Difference in m_{top}^{out} using different amount of QCD initial and final state radiation

AcerMC using HERWIG

Systematic uncertainty ¹ [@	eV]	m _{T2}
Data Statistics		0.5
Signal MC generator		0.2
Hadronisation		0.9
ISR and FSR		0.8
Jet Energy Scale		1.8
b-Jet Energy Scale		1.8
Total Systematic Uncertair	nty	2.8
Total Uncertainty		2.8

¹no background, just systematic effects shown here, ATLAS work in progress

Difference in m_{top}^{out} using different jet energy scales

 $\,$ $\,$ $\,$ Variation of the JES up and down by 1 σ

Systematic uncertainty ¹ [G	eV]	m _{T2}
Data Statistics		0.5
Signal MC generator		0.2
Hadronisation		0.9
ISR and FSR		0.8
Jet Energy Scale		1.8
b-Jet Energy Scale		1.8
Total Systematic Uncertain	nty	2.8
Total Uncertainty		2.8

¹no background, just systematic effects shown here, ATLAS work in progress

Difference in m_{top}^{out} using different b-jet energy scales

 $\,$ $\,$ $\,$ Variation of the bJES up and down by 1 σ

Systematic uncertainty ¹ [C	GeV]	m _{T2}
Data Statistics		0.5
Signal MC generator		0.2
Hadronisation		0.9
ISR and FSR		0.8
Jet Energy Scale		1.8
b-Jet Energy Scale		1.8
Total Systematic Uncertai	nty	2.8
Total Uncertainty		2.8

¹no background, just systematic effects shown here, ATLAS work in progress

Evaluate systematic uncertainties

- Analyse distributions varied by systematic effect
- Difference in m_{top}^{out} as estimate of the systematic effect

Systematic uncertainty ¹ [GeV]	m _{T2}	
Data Statistics	0.5	
Signal MC generator	0.2	
Hadronisation	0.9	
ISR and FSR	0.8	
Jet Energy Scale	1.8	
b-Jet Energy Scale	1.8	
Total Systematic Uncertainty	2.8	
Total Uncertainty	2.8	
Preliminary result: $m_{top} = 175$.	$7\pm0.5\pm2.8~Ge$	${}^{2}V^{1}$

¹no background, just systematic effects shown here, ATLAS work in progress

- The Template Method for the m_{T2} Method was presented
 - Calculation of the observable
 - Construction of the templates
 - Method validation
 - Application on data
 - Evaluation of the most important systematics

Thank you for your attention!

Backup

Andreas Alexander Maier

Data and MC Samples

Data sample

- Corresponding to 4.7 fb⁻¹
- Recorded by ATLAS in 2011
- MC samples for templates
 - Event generator: MC@NLO + HERWIG/Jimmy
 - Detector simulation: GEANT4
 - Jet reconstruction algorithm: AntiKt 0.4 TopoCluster jets
 - B-Jet identification: MV1 b-tag algorithm with 70 % efficiency, 1/134 mistag rate
 - Different m_{top} (160 GeV 190 GeV)
 - Up to 20 times data statistics

Expected Background

Main background sources:

- Drell-Yan process
- Single top production
 Diboson production
 - Fake leptons

Analysis taking the mean as estimator¹

Total Signal	719	
Total Background	38	
Total Events	757	
Background Fraction	5%	

Expected background fraction: Same order of magnitude O(5%)

1ATLAS-COM-CONF-2012-096

Some Control Plots

Pseudoexperiments for 4.7 fb⁻¹

Change of Distributions with m_{top}

Systematic uncertainty	m _{T2}	Neutrino Weighting
Data Statistics	0.5	0.6
Signal MC generator	0.2	0.4
Hadronisation	0.9	0.6
ISR and FSR	0.8	1.0
Jet Energy Scale	1.8	1.5
b-Jet Energy Scale	1.8	1.6
Total Systematic Uncertainty	2.8	2.5
Total Uncertainty	2.8	2.6

Comparison m_{T_2} and Neutrino Weighting Method

- Difference in uncertainty is not significant
- At the moment none of both is the better method

Multipurpose detector covering almost the full solid angle
 Analyzing pp collisions at LHC: 4.7 fb⁻¹ in 2011

Measure for forward direction: pseudorapidity $\eta = -\log \tan \Theta/2$

Neutrino Weighting Method¹

Young Scientists Workshop at Ringberg Castle, July 23rd 2012

300

Cut Flow on MC samples

True dilepton events/after GRL for data	4%
trigger	82%
good vertex	100%
cosmic rejection	100%
>= 2 leptons	30%
one of the leptons matches the trigger	100%
remove events tagged as e-mu overlap	100%
Jet Cleaning	99%
MET & HT (MET(ee,mumu)>60 GeV, HT (emu)>130 GeV)	74%
At least 2 jets with pt > 25 GeV, eta < 2.5	80%
exactly 2 leptons	100%
Opposite-sign leptons	100%
M(ee, mumu)> 15 GeV	100%
M(ee, mumu) - 91 GeV > 10 GeV	94%
Both leptons match to truth leptons	100%
>=1 tagged jet with MV1 w> 0.601713	87%
>=2 tagged jet with MV1 w> 0.601713	51%

