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Mathematica vs. FORM

Mathematica

• Much built-in
knowledge,

• Big and slow (especially
on large problems),

• Very general,

• GUI, add-on packages . . .

FORM

• Limited mathematical knowledge,

• Small and fast (also on large
problems),

• Optimized for certain classes of
problems,

• Batch program (edit–run cycle).
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Mathematica
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Expert Systems

In technical terms, Mathematica is an Expert System.
Knowledge is added in form of Transformation Rules.
An expression is transformed until no more rules apply.

Example:

myAbs[x_] := x /; NonNegative[x]

myAbs[x_] := -x /; Negative[x]

We get:
myAbs[3] ☞ 3

myAbs[-5] ☞ 5

myAbs[2 + 3 I] ☞ myAbs[2 + 3 I]

— no rule for complex arguments so far

myAbs[x] ☞ myAbs[x]

— no match either
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Immediate and Delayed Assignment

Transformations can either be

• added “permanently” in form of Definitions,

norm[vec_] := Sqrt[vec . vec]

norm[{1, 0, 2}] ☞ Sqrt[5]

• applied once using Rules:

a + b + c /. a -> 2 c ☞ b + 3 c

Transformations can be Immediate or Delayed. Consider:

{r, r} /. r -> Random[] ☞ {0.823919, 0.823919}

{r, r} /. r :> Random[] ☞ {0.356028, 0.100983}

Mathematica is one of those programs, like TEX, where you wish you’d gotten a US keyboard for all those braces and brackets.
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Almost everything is a List

All Mathematica objects are either Atomic, e.g.

Head[133] ☞ Integer

Head[a] ☞ Symbol

or (generalized) Lists with a Head and Elements:

expr = a + b

FullForm[expr] ☞ Plus[a, b]

Head[expr] ☞ Plus

expr[[0]] ☞ Plus — same as Head[expr]

expr[[1]] ☞ a

expr[[2]] ☞ b
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List-oriented Programming

Using Mathematica’s list-oriented commands is almost always
of advantage in both speed and elegance.

Consider:

array = Table[Random[], {10^7}];

test1 := Block[ {sum = 0},

Do[ sum += array[[i]], {i, Length[array]} ];

sum ]

test2 := Apply[Plus, array]

Here are the timings:

Timing[test1][[1]] ☞ 31.63 Second

Timing[test2][[1]] ☞ 3.04 Second
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Map, Apply, and Pure Functions

Map applies a function to all elements of a list:

Map[f, {a, b, c}] ☞ {f[a], f[b], f[c]}

f /@ {a, b, c} ☞ {f[a], f[b], f[c]} — short form

Apply exchanges the head of a list:

Apply[Plus, {a, b, c}] ☞ a + b + c

Plus @@ {a, b, c} ☞ a + b + c — short form

Pure Functions are a concept from formal logic. A pure
function is defined ‘on the fly’:

(# + 1)& /@ {4, 8} ☞ {5, 9}

The # (same as #1) represents the first argument, and the &

defines everything to its left as the pure function.
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List Operations

Flatten removes all sub-lists:

Flatten[f[x, f[y], f[f[z]]]] ☞ f[x, y, z]

Sort and Union sort a list. Union also removes duplicates:

Sort[{3, 10, 1, 8}] ☞ {1, 3, 8, 10}

Union[{c, c, a, b, a}] ☞ {a, b, c}

Prepend and Append add elements at the front or back:

Prepend[r[a, b], c] ☞ r[c, a, b]

Append[r[a, b], c] ☞ r[a, b, c]

Insert and Delete insert and delete elements:

Insert[h[a, b, c], x, {2}] ☞ h[a, x, b, c]

Delete[h[a, b, c], {2}] ☞ h[a, c]
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Patterns

One of the most useful features is Pattern Matching:
_ — matches one object

__ — matches one or more objects

___ — matches zero or more objects

x_ — named pattern (for use on the r.h.s.)

x_h — pattern with head h

x_:1 — default value

x_?NumberQ — conditional pattern

x_ /; x > 0 — conditional pattern

Patterns take function overloading to the limit, i.e. functions
behave differently depending on details of their arguments:

Attributes[Pair] = {Orderless}

Pair[p_Plus, j_] := Pair[#, j]& /@ p

Pair[n_?NumberQ i_, j_] := n Pair[i, j]
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Mathematical Functions

Mathematica is equipped with a large set of mathematical
functions, both for symbolic and numeric operations.

Some examples:
Integrate[x^2, {x,3,5}] — integral

D[f[x], x] — derivative

Sum[i, {i,50}] — sum

Series[Sin[x], {x,1,5}] — series expansion

Simplify[(x^2 - x y)/x] — simplify

Together[1/x + 1/y] — put on common denominator

Inverse[mat] — matrix inverse

Eigenvalues[mat] — eigenvalues

PolyLog[2, 1/3] — polylogarithm

LegendreP[11, x] — Legendre polynomial

Gamma[.567] — Gamma function
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Graphics

Mathematica has formidable graphics capabilities:

Plot[ArcTan[x], {x, 0, 2.5}]

ParametricPlot[{Sin[x], 2 Cos[x]}, {x, 0, 2 Pi}]

Plot3D[1/(x^2 + y^2), {x, -1, 1}, {y, -1, 1}]

ContourPlot[x y, {x, 0, 10}, {y, 0, 10}]

Output can be saved to a file with Export:

plot = Plot[Abs[Zeta[1/2 + x I]], {x, 0, 50}]

Export["zeta.eps", plot, "EPS"]
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Mathematica Summary

• Mathematica makes it wonderfully easy, even for fairly
unskilled users, to manipulate expressions.

• Most functions you will ever need are already built in.

• When using its capabilities (in particular list-oriented
programming and pattern matching) right, Mathematica
can be very efficient.
Wrong: FullSimplify[veryLongExpression].

• Mathematica is a general-purpose system, i.e. convenient
to use, but not ideal for everything.
For example, in numerical functions, Mathematica
usually selects the algorithm automatically, which may
or may not be a good thing.
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FORM
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FORM Essentials

• A FORM program is divided into Modules.
Simplification happens only at the end of a module.

• FORM is strongly typed –
all variables have to be declared:
Symbols, Vectors, Indices, (N)Tensors, (C)Functions.

• FORM works on one term at a time:
Can do “Expand[(a + b)^2]” (local operation) but
not “Factor[a^2 + 2 a b + b^2]” (global operation).

• FORM is mainly strong on polynomial expressions.

• FORM program + documentation + course available from
http://nikhef.nl/∼form.
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A Simple Example in FORM

Symbols a, b, c, d;

Local expr = (a + b)^2;

id b = c - d;

print;

.end

Running this program gives:
FORM by J.Vermaseren,version 3.2(Mar 1 2007) Run at: Tue May 8 10:14:12 2007

Symbols a, b, c, d;

Local expr = (a + b)^2;

id b = c - d;

print;

.end

Time = 0.00 sec Generated terms = 6

expr Terms in output = 6

Bytes used = 104

expr =

d^2 - 2*c*d + c^2 - 2*a*d + 2*a*c + a^2;

0.00 sec out of 0.00 sec
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Module Structure

A FORM program consists of Modules. A Module is
terminated by a “dot” statement (.sort, .store, .end, . . .)

• Generation Phase (“normal” statements)
During the execution of “normal” statement terms are
only generated. This is a purely local operation – only
one term at a time needs to be looked at.

• Sorting Phase (“dot” statements):
At the end of the module all terms are inspected and
similar terms collected. This is the only ‘global’ operation
which requires FORM to look at all terms
‘simultaneously.’
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Sorting and Generating
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id x = a + b;

.sort

endif;

.end

if(count(b,1)==1);
multiply 4*a/b;

print;

l expr = a*x + x^2;

+14*a^2   +b^2

a*x    +x^2

+2*a^2   +3*a*b    +b^2

+a^2   +a*b    +a^2   +a*b   +a*b    +b^2

+2*a^2    +12*a^2   +b^2
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Id-Statement

The central statement in FORM is the id-Statement:

a^3*b^2*c

id a*b = d; ☞ a*c*d^2 — multiple match

once a*b = d; ☞ a^2*b*c*d — single match

only a*b = d; ☞ a^3*b^2*c — no exact match possible

id does not, by default, match negative powers:

x + 1/x

id x = y; ☞ x^-1 + y

id x^n? = y^n; ☞ y^-1 + y — wildcard exponent
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Patterns

Patterns are possible (but not as powerful as in Mathematica):

f(a, b, c) + f(1, 2, 3)

id f(a, b, c) = 1; ☞ 1 + f(1, 2, 3)

— explicit match

id f(a?, b?, c?) = 1; ☞ 2

— wildcard match

id f(?a) = g(?a); ☞ g(a, b, c) + g(1, 2, 3)

— group-wildcard match

id f(a?int_, ?a) = a; ☞ 1 + f(a, b, c)

— constrained wildcard

id f(a?{a,b}, ?a) = a; ☞ a + f(1, 2, 3)

— alternatives
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Preprocessor

FORM has a Preprocessor which operates before the compiler.

Many constructs are familiar from C, but the FORM
preprocessor can do more:

• #define, #undefine, #redefine,

• #if{,def,ndef} . . . #else . . . #endif,

• #switch . . . #endswitch,

• #procedure . . . #endprocedure, #call,

• #do . . . #enddo,

• #write, #message, #system.

The preprocessor works across modules, e.g. a do-loop can
contain a .sort statement.
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Special Commands for High-Energy Physics

• Gamma matrices: g_, g5_, g6_, g7_.

• Fermion traces: trace4, tracen, chisholm.

• Levi-Civita tensors: e_, contract.

• Index properties: {,anti,cycle}symmetrize.

• Dummy indices: sum, replaceloop.
(e.g. ∑i aibi + ∑j ajbj = 2∑i aibi)
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FORM Summary

• FORM is a freely available Computer Algebra System
with (some) specialization on High Energy Physics.

• Programming in FORM takes more ‘getting used to’ than
in Mathematica. Also, FORM has no GUI or other
programming aids.

• FORM programs are module-oriented with global
(= costly) operations occurring only at the end of module.
A strategic choice of these points optimizes performance.

• FORM is typically much faster than Mathematica on
polynomial expressions and can handle in particular
huge (GB) expressions.
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Examples
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List of Examples

• Antisymmetric Tensor
Built-in in FORM, easy in Mathematica.

• Application of Momentum Conservation
Easy in Mathematica, complicated in FORM.

• Abbreviationing
Easy in Mathematica, practically impossible in FORM.

• Simplification of Colour Structures
Different approaches.

• Calculation of a Fermion Trace
Built-in in FORM, complicated in Mathematica.
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Reference Books, Formula Collections

• V.I. Borodulin et al.
CORE (Compendium of Relations)
hep-ph/9507456.

• Herbert Pietschmann
Formulae and Results in Weak Interactions
Springer (Austria) 2nd ed., 1983.

• Andrei Grozin
Using REDUCE in High-Energy Physics
Cambridge University Press, 1997.
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Antisymmetric Tensor

The Antisymmetric Tensor in n dimensions is denoted by
εi1i2...in . You can think of it as a matrix-like object which has
either −1, 0, or 1 at each position.

For example, the Determinant of a matrix, being a completely
antisymmetric object, can be written with the ε-tensor:

detA =
n

∑
i1,...,in=1

εi1i2...in Ai11Ai22 · · ·Ainn

In practice, the ε-tensor is usually contracted, e.g. with vectors.
We will adopt the following notation to avoid dummy indices:

εµνρσp
µqνrρsσ = ε(p, q, r, s) .
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Antisymmetric Tensor in Mathematica

(* implement linearity: *)

Eps[a___, p_Plus, b___] := Eps[a, #, b]&/@ p

Eps[a___, n_?NumberQ r_, b___] := n Eps[a, r, b]

(* otherwise sort the arguments into canonical order: *)

Eps[args__] := Signature[{args}] Eps@@ Sort[{args}] /;

!OrderedQ[{args}]
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Momentum Conservation

Problem: Proliferation of terms in expressions such as

d =
1

(p1 + p2 − p3)2 +m2

=
1

p2
1
+ p2

2
+ p2

3
+ 2p1p2 − 2p2p3 − 2p1p3 +m2

,

whereas if p1 + p2 = p3 + p4 we could have instead

d =
1

p2
4
+m2

.

In Mathematica: just do d /. p1 + p2 - p3 -> p4

(or better: Simplify[d, p1 + p2 == p3 + p4]).

Problem: FORM cannot replace sums.
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Momentum Conservation in FORM

Idea: for each expression x, add and subtract a zero, i.e. form

{x, y = x+ σ, z = x− σ}, where e.g. σ = p1+ p2− p3− p4 ,

then select the shortest expression. But: how to select the
shortest expression (in FORM)?

Solution: add the number of terms of each argument, i.e.

{x, y, z} → {
1

x,
2

y,
3

z,
4

nx,
5

ny,
6

nz} .

Then sort nx, ny, nz , but when exchanging na and nb,
exchange also a and b:

symm ‘foo’ (4,1) (5,2) (6,3);

This unconventional sort statement is rather typical for FORM.
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Momentum Conservation in FORM

#procedure Shortest(foo)

id ‘foo’([x]?) = ‘foo’([x], [x] + ‘MomSum’, [x] - ‘MomSum’);

* add number-of-terms arguments

id ‘foo’([x]?, [y]?, [z]?) = ‘foo’([x], [y], [z],

nterms_([x]), nterms_([y]), nterms_([z]) );

* order according to the nterms

symm ‘foo’ (4,1) (5,2) (6,3);

* choose shortest argument

id ‘foo’([x]?, ?a) = ‘foo’([x]);

#endprocedure
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Abbreviationing

One of the most powerful tricks to both reduce the size of an
expression and reveal its structure is to substitute
subexpressions by new variables.

The essential function here is Unique with which new symbols
are introduced. For example,

Unique["test"]

generates e.g. the symbol test1, which is guaranteed not to
be in use so far.
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Abbreviationing in Mathematica

$AbbrPrefix = "c"

abbr[expr_] := abbr[expr] = Unique[$AbbrPrefix]

(* abbreviate function *)

Structure[expr_, x_] := Collect[expr, x, abbr]

(* get list of abbreviations *)

AbbrList[] := Cases[DownValues[abbr],

_[_[_[f_]], s_Symbol] -> s -> f]

(* restore full expression *)

Restore[expr_] := expr /. AbbrList[]
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Colour Structures

In Feynman diagrams four type of Colour structures appear:
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a

i

j

∼ T a
ij =SUNT[a,i,j]

i

j

k

ℓ

∼ T a
ijT

a
kℓ = SUNTSum[i,j,k,ℓ]

A
d
jo
in
t
R
ep

re
se
n
ta
ti
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n a

b

c

∼ fabc
= SUNF[a,b,c]

a

b

c

d

∼ fabxfxcd
= SUNF[a,b,c,d]
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Unified Notation

The SUNF’s can be converted to SUNT’s via

fabc = 2i
[

Tr(T cT bT a)− Tr(T aT bT c)
]

.

We can now represent all colour objects by just SUNT:

• SUNT[i,j] = δij

• SUNT[a,b, . . .,i,j] = (T aT b · · · )ij

• SUNT[a,b, . . .,0,0] = Tr(T aT b · · · )

This notation again avoids unnecessary dummy indices.
(Mainly namespace problem.)

For purposes such as the “large-Nc limit” people like to use
SU(N) rather than an explicit SU(3).
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Fierz Identities

The Fierz Identities relate expressions with different orderings
of external particles. The Fierz identities essentially express
completeness of the underlying matrix space.

They were originally found by Markus Fierz in the context of
Dirac spinors, but can be generalized to any
finite-dimensional matrix space [hep-ph/0412245].

For SU(N) (colour) reordering, we need

T a
ijT

a
kℓ =

1

2

(

δiℓδkj −
1

N
δijδkℓ

)

.
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Cvitanovich Algorithm

For an Amplitude:

• convert all colour structures to (generalized) SUNT objects,

• simplify as much as possible, i.e. use the Fierz identity on
all internal gluon lines.

For a Squared Amplitude:

• use the Fierz identity for SU(N) to get rid of all SUNT
objects.

For “hand” calculations, a pictorial version of this algorithm
exists in the literature.
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Colour Simplify in FORM

* introduce dummy indices for the traces

repeat;

once SUNT(?a, 0, 0) = SUNT(?a, DUMMY, DUMMY);

sum DUMMY;

endrepeat;

* take apart SUNTs with more than one T

repeat;

once SUNT(?a, [a]?, [b]?, [i]?, [j]?) =

SUNT(?a, [a], [i], DUMMY) * SUNT([b], DUMMY, [j]);

sum DUMMY;

endrepeat;

* apply the Fierz identity

id SUNT([a]?, [i]?, [j]?) * SUNT([a]?, [k]?, [l]?) =

1/2 * SUNT([i], [l]) * SUNT([j], [k]) -

1/2/(‘SUNN’) * SUNT([i], [j]) * SUNT([k], [l]);
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Translation to Colour-Chain Notation

In colour-chain notation we can distinguish two cases:

a) Contraction of different chains:

〈A|T a |B〉 〈C|T a |D〉 =
1

2

(

〈A|D〉 〈C |B〉 −
1

N
〈A|B〉 〈C |D〉

)

,

b) Contraction on the same chain:

〈A|T a |B|T a |C〉 =
1

2

(

〈A|C〉TrB −
1

N
〈A|B |C〉

)

.
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Colour Simplify in Mathematica

(* same-chain version *)

sunT[t1___, a_Symbol, t2___, a_, t3___, i_, j_] :=

(sunT[t1, t3, i, j] sunTrace[t2] -

sunT[t1, t2, t3, i, j]/SUNN)/2

(* different-chain version *)

sunT[t1___, a_Symbol, t2___, i_, j_] *

sunT[t3___, a_, t4___, k_, l_] ^:=

(sunT[t1, t4, i, l] sunT[t3, t2, k, j] -

sunT[t1, t2, i, j] sunT[t3, t4, k, l]/SUNN)/2

(* introduce dummy indices for the traces *)

sunTrace[a__] := sunT[a, #, #]&[ Unique["col"] ]
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Fermion Trace

Leaving apart problems due to γ5 in d dimensions, we have as
the main algorithm for the 4d case:

Tr γµγνγργσ · · · = + gµν Tr γργσ · · ·

− gµρ Tr γνγσ · · ·

+ gµσ Tr γνγρ · · ·

This algorithm is recursive in nature, and we are ultimately
left with

Tr 1l = 4 .

(Note that this 4 is not the space-time dimension, but the
dimension of spinor space.)
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Fermion Trace in Mathematica

Trace4[mu_, g__] :=

Block[ {Trace4, s = -1},

Plus@@ MapIndexed[

((s = -s) Pair[mu, #1] Drop[Trace4[g], #2])&,

{g} ]

]

Trace4[] = 4
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