Stefano Terzo

Max-Planck-Institut für Physik ATLAS-SCT Group

Young Scientists Workshop Ringberg Castle 23rd - 27th July 2012

Overlook

Motivation and introduction

- The ATLAS silicon pixel tracker
- High Lumi LHC
- Radiation damage in silicon detectors

New pixel detectors characterization

- New thin n-in-p silicon pixel prototypes
- Test-beam experiments

Summary

Motivation and introduction

The ATLAS silicon pixel tracker

The ATLAS Detector

Motivation and introduction

The ATLAS silicon pixel tracker

The silicon pixel tracker

Motivation and introduction

The ATLAS silicon pixel tracker

The pixel tracker challenge

Motivation and introduction

The ATLAS silicon pixel tracker

The present ATLAS pixels

- 46080 Pixel channels per module: $50 \ \mu m \times 400 \ \mu m$
- n-in-n silicon sensors: $\sim 300\,\mu{\rm m}$ thick
- FE-I3 readout chip with ~ 3000 e[−] lowest threshold.

Motivation and introduction

The ATLAS silicon pixel tracker

What a silicon pixel detector is

- A pure intrinsic semiconductor has equal electron and hole densities
 - Transferred energy:
 - $\rightarrow\,$ electron exited from the valence to the conduction band
 - \rightarrow MIP: $\sim 8000 \, \text{e}^-$ -h pairs $\times 100 \, \mu \text{m}$
- Doping \rightarrow introduce impurities in the Si lattice:

n-type:

- \rightarrow free electrons
- → Fermi level near the Conduction Band

p-type:

- \rightarrow free holes (electron vacancies)
- Fermi level near the Valence Band

Motivation and introduction

The ATLAS silicon pixel tracker

What a silicon pixel detector is

- A pure intrinsic semiconductor has equal electron and hole densities
 - Transferred energy:
 - $\rightarrow\,$ electron exited from the valence to the conduction band
 - \rightarrow MIP: $\sim 8000 \, \text{e}^-$ -h pairs $\times 100 \, \mu \text{m}$
- Doping \rightarrow introduce impurities in the Si lattice:

- \rightarrow free electrons
- → Fermi level near the Conduction Band

p-type:

- \rightarrow free holes (electron vacancies)
- Fermi level near the Valence Band

Motivation and introduction

The ATLAS silicon pixel tracker

What a silicon pixel detector is

- A pure intrinsic semiconductor has equal electron and hole densities
 - Transferred energy:
 - $\rightarrow\,$ electron exited from the valence to the conduction band
 - \rightarrow MIP: $\sim 8000 \, \text{e}^-$ -h pairs $\times 100 \, \mu \text{m}$
- Doping \rightarrow introduce impurities in the Si lattice:

n-type:

- \rightarrow free electrons
- → Fermi level near the Conduction Band

p-type:

- \rightarrow free holes (electron vacancies)
 - Fermi level near the Valence Band

Motivation and introduction

The ATLAS silicon pixel tracker

Reversed bias p-n junction

p-n junction:

- ightarrow there must be a single Fermi level
- ightarrow band structure deformation
- ightarrow potential difference in the junction
- ightarrow charge flows until the equilibrium

Reversed bias:

- \rightarrow increase of the depletion zone
- \rightarrow depleted zone = sensitive volume
- $ightarrow V_B > V_{
 m dep}
 ightarrow$ maximum collected charge

Motivation and introduction

The ATLAS silicon pixel tracker

Reversed bias p-n junction

p-n junction:

- ightarrow there must be a single Fermi level
- ightarrow band structure deformation
- ightarrow potential difference in the junction
- ightarrow charge flows until the equilibrium

Reversed bias:

- ightarrow increase of the depletion zone
- \rightarrow depleted zone = sensitive volume
- $ightarrow V_B > V_{
 m dep}
 ightarrow$ maximum collected charge

Motivation and introduction

The ATLAS silicon pixel tracker

Reversed bias p-n junction

p-n junction:

- \rightarrow there must be a single Fermi level
- \rightarrow band structure deformation
- \rightarrow potential difference in the junction
- ightarrow charge flows until the equilibrium

- ightarrow increase of the depletion zone
- → depleted zone = sensitive volume
- $ightarrow V_B > V_{
 m dep}
 ightarrow$ maximum collected charge

Motivation and introduction

The ATLAS silicon pixel tracker

Reversed bias p-n junction

p-n junction:

- \rightarrow there must be a single Fermi level
- \rightarrow band structure deformation
- \rightarrow potential difference in the junction
- ightarrow charge flows until the equilibrium

Reversed bias:

- ightarrow increase of the depletion zone
- \rightarrow depleted zone = sensitive volume
- $ightarrow V_B > V_{
 m dep}
 ightarrow$ maximum collected charge

Motivation and introduction

The ATLAS silicon pixel tracker

Reversed bias p-n junction

p-n junction:

- \rightarrow there must be a single Fermi level
- ightarrow band structure deformation
- ightarrow potential difference in the junction
- ightarrow charge flows until the equilibrium

Reversed bias:

- \rightarrow increase of the depletion zone
- → depleted zone = sensitive volume
- $ightarrow V_B > V_{
 m dep}
 ightarrow {
 m maximum collected} {
 m charge}$

Motivation and introduction

The ATLAS silicon pixel tracker

Reversed bias p-n junction

p-n junction:

- \rightarrow there must be a single Fermi level
- ightarrow band structure deformation
- ightarrow potential difference in the junction
- ightarrow charge flows until the equilibrium

- \rightarrow increase of the depletion zone
- → depleted zone = sensitive volume

 $ightarrow V_B > V_{
m dep}
ightarrow$ maximum collected charge

Motivation and introduction

The ATLAS silicon pixel tracker

Reversed bias p-n junction

p-n junction:

- \rightarrow there must be a single Fermi level
- ightarrow band structure deformation
- ightarrow potential difference in the junction
- ightarrow charge flows until the equilibrium

Reversed bias:

- \rightarrow increase of the depletion zone
- → depleted zone = sensitive volume
- $ightarrow V_B > V_{dep}
 ightarrow$ maximum collected charge

Motivation and introduction

The ATLAS silicon pixel tracker

Pixel surface segmentation

- \rightarrow True 3D spatial information
- Readout chip coupling (bump bonding)

An Dastt

Motivation and introduction

The ATLAS silicon pixel tracker

Motivation and introduction

The ATLAS silicon pixel tracker

Motivation and introduction

The ATLAS silicon pixel tracker

Motivation and introduction

The ATLAS silicon pixel tracker

Different pixel technology

n-in-n:

- \rightarrow electron collection
- ightarrow depletion from the backside
- \rightarrow double-sided process

n-in-p:

- \rightarrow electron collection
- \rightarrow depletion from the frontside
- \rightarrow single-sided process
- p-in-n:
 - \rightarrow hole collection
 - ightarrow depletion from the frontside
 - \rightarrow single-sided process

Motivation and introduction

High Lumi LHC

The LHC upgrade program

- LHC now
 - $\rightarrow E_{CM} = 8 \text{ TeV}$
 - \rightarrow Luminosity = $6 \times 10^{33} \, \mathrm{cm}^{-2} \mathrm{s}^{-1}$
- LHC design
 - $\rightarrow E_{CM} = 14 \,\text{TeV}$
 - \rightarrow Luminosity = $10^{34} \, \mathrm{cm}^{-2} \mathrm{s}^{-1}$

HL-LHC (~2020)

- \rightarrow Luminosity $\sim 10^{35} \, \mathrm{cm}^{-2} \mathrm{s}^{-1}$
- \rightarrow high event rate for rare decay search
- → extremely high radiation dose for the innermost pixel layers

Motivation and introduction

High Lumi LHC

The LHC upgrade program

- LHC now
 - $\rightarrow E_{CM} = 8 \text{ TeV}$
 - \rightarrow Luminosity = $6 \times 10^{33} \, \mathrm{cm}^{-2} \mathrm{s}^{-1}$
- LHC design
 - $\rightarrow E_{CM} = 14 \,\text{TeV}$
 - \rightarrow Luminosity = $10^{34} \, \mathrm{cm}^{-2} \mathrm{s}^{-1}$

HL-LHC (~2020)

- \rightarrow Luminosity $\sim 10^{35} \, \mathrm{cm}^{-2} \mathrm{s}^{-1}$
- \rightarrow high event rate for rare decay search
- → extremely high radiation dose for the innermost pixel layers

Motivation and introduction

Radiation damage in silicon detectors

Radiation damage in silicon detectors

New pixel detectors characterization

New thin n-in-p silicon pixel prototypes

Our new thin silicon detectors

- $75\,\mu{
 m m}$ and $150\,\mu{
 m m}$ thinned sensors
 - \rightarrow lower trapping probability
 - ightarrow lower depletion voltage ($V_{
 m dep} \sim d^2$)
 - \rightarrow less multiple scattering

🕨 n-in-p

- $\rightarrow~$ depletion from the pixel side
- \rightarrow single side process

lower signals \rightarrow new FE-I4 readout chip that allows lower thresholds

New pixel detectors characterization

Test-beam experiments

Characterization in a test-beam experiment

The characterization purpose:

probing the detector surface with a precision of a few microns to study its performances before and after irradiation

New pixel detectors characterization

Test-beam experiments

What we need:

a pure and well defined source of particles:

- SpS at CERN: 120 GeV pions
- ► DESY at Hamburg: 4 GeV electrons → Multiple Scattering (MS)

- $ightarrow \,$ tracking planes made of other pixel detectors
- ightarrow scintillators to determine when a particle is crossing the telescope
- $ightarrow \,$ track reconstruction and projection on the Detector Under Test

New pixel detectors characterization

Test-beam experiments

What we need:

an external fixed reference frame:

\rightarrow tracking planes made of other pixel detectors

ightarrow scintillators to determine when a particle is crossing the telescope

ightarrow track reconstruction and projection on the Detector Under Test

New pixel detectors characterization

Test-beam experiments

What we need:

an external fixed reference frame:

- \rightarrow tracking planes made of other pixel detectors
- ightarrow scintillators to determine when a particle is crossing the telescope
- ightarrow track reconstruction and projection on the Detector Under Test

New pixel detectors characterization

Test-beam experiments

What we need:

an external fixed reference frame:

- \rightarrow tracking planes made of other pixel detectors
- ightarrow scintillators to determine when a particle is crossing the telescope
- $ightarrow \,$ track reconstruction and projection on the Detector Under Test

New pixel detectors characterization

Test-beam experiments

What we need:

an external fixed reference frame:

- \rightarrow tracking planes made of other pixel detectors
- ightarrow scintillators to determine when a particle is crossing the telescope
- $ightarrow \,$ track reconstruction and projection on the Detector Under Test

New pixel detectors characterization

Test-beam experiments

The Timepix telescope

- MEDIPIX: $55 \,\mu m \times 55 \,\mu m$
- $300\,\mu\mathrm{m}$ thick p-in-n
- Tilted planes \rightarrow charge sharing
- ► ToA plane \rightarrow improved trigger
 - Pointing resolution $\sim 1.5\,\mu{\rm m}$

An. Agati

New pixel detectors characterization

Test-beam experiments

Charge sharing

- Single pixel spatial resolution = $\frac{p}{\sqrt{12}}$
- Improved resolution by charge weighting in adjacent pixels

AL-Dy att

New pixel detectors characterization

Test-beam experiments

Charge sharing

- Single pixel spatial resolution = $\frac{p}{\sqrt{12}}$
- Improved resolution by charge weighting in adjacent pixels

New pixel detectors characterization

Test-beam experiments

The EUDET telescope

- $\blacktriangleright \mathsf{MIMOSA:} 18.4\,\mu\mathrm{m} \times 18.4\,\mu\mathrm{m}$
- \triangleright 50 μm thick CMOS (MAPS)
- Small pixel pitch but no charge reading
- Very thin \rightarrow less MS
- Pointing resolution between $2 \,\mu m$ and $5 \,\mu m$

Summary

- the harsh radiation environment at HL-LHC will require new radiation hard detectors
- n-in-p detectors have already shown good results after high irradiation

Now:

- new FE-I4 modules $150\,\mu m$ thick irradiated up to $4\times 10^{15}\,n_{eq} cm^{-2}$ have already been tested:
 - at DESY with the Eudet telescope and
 - at SpS with both Eudet and Timepix
 - ... and data analysis is ongoing!

Future plans:

new FE-I4 chip production to test further irradiation up to $2\times 10^{16}\,{\rm n_{eq}cm^{-2}}$