Segmented Broad Energy Germanium Detectors

Motivation

>Germanium Detectors

≻Summary

Speaker: Heng-Ye Liao Author: Heng-Ye Liao+Burçin Dönmez on behalf of GERDA+GeDet Collaboration

Young Scientist Workshop 2012

@ Ringberg Castle, München, 24/07/2012

GERmanium Detector Array

Physics Motivation

- Do we understand neutrinos?
 No! Still many open questions
- We only have information on the squared mass difference between the eigenstates
 ⇒ Absolute mass scale is still unknown
- We do not know the sign of ∆m₃₂
 ⇒ Mass hierarchy is still unknown
- Are neutrinos their own antiparticle,
 i.e. Majorana particles?
 - ⇒ Nature of the neutrinos is still unknown

Searching for Neutrinoless Double Beta Decay

- ■ $2\nu\beta\beta$ decay: (A,Z) → (A,Z+2) +2e⁻+2ν SM allowed & observed
- Ovββ decay: ΔL=2

 (A,Z) → (A,Z+2) +2e⁻
 if vs Majorana & have mass

 ⇒ Signature:

 Sharp peak at Q-value of the decay

Background & Motivation

- This peak is NOT big enough & there are other backgrounds
- Avoid background:
 - Store enriched material underground
 - Avoid cosmic muons by going deep underground
 - Compact shielding design
 - Minimize material close to detectors

•••••

Background is unavoidable, you always need to recognize background ⇒ Build intelligent detectors

⇒ topic of the talk today

Example for Intelligent Design – Segmented Germanium Detectors

n-type true coaxial inner Φ 10mm outer Φ 75mm height 69.8mm 1.632kg Bias 3kV

"snap" contacts with Kapton cable and PTFE button

19g Cu, 7g PTFE, 2.5g Kapton per detector

Signal & Background

localized deposit single site event

several deposits multi site event

A Real Example

Any other good detector design?

Broad Energy Germanium Detector (BEGe)

Barbeau, et al. JCAP09 (2007) 009

BEGe Advantages:

- Smaller p+ electrode ⇒ less capacitance
 ⇒ less noise
- Favorable internal electric field distribution
 Powerful PSD capability

Pulse Shape Discrimination of BEGe

D. Budjáš et al., JINST 4:P10007,2009 M. Agostini et al., JINST 6:P03005, 2011

BEGe V.S. Segmented HPGe

Segmented HPGe

Disadvantages:

- Big Capacity→Noisy
- Short Drift Length → Short rise time
- Segmentation → More material

Advantages:

 More information for event topologies

BEGe

Advantages:

- Low capacity→Low noise
- Low field in bulk →Long Drift
- Powerful MSE discrimination

Disadvantages:

 Only 1D hit-separation sensitivity

Can we improve current detector geometries?

When BEGe meets Segmented HPGe...

Segmented BEGe

Segmented BEGe

- Break degeneracy in r and ϕ coordinate
- Measure time over threshold (Δt), trigger time(t_0) & Amplitude
- Systematically study charge collection efficiency

Segmented BEGe

How to study?

By pulse shape simulation.

Why pulse shape simulation?

- Help on detector design
- Improve the understanding of Germanium detector ex. Impurity distribution
- Estimate efficiency of pulse shape analysis(PSA) ex. SSE, MSE
- Tool for real data analysis ex. Build PS pool for analysis

Which kind of simulation tools are we using?

- Electrode design & field calculation are done on Maxwell
- Pulse shape simulations are performed in MaGe.

Design Evolution

Several Designs are considered

Segmented BEGe Dector - First Prototype

Detector dimensions. Height is 40 mm, diameter is 75 mm and point contact diameter is 15 mm.

- n-type detector.
- 3 Detector bias is 4500 V.
- 4 Linear Impurity density. $0.7 \times 10^{10} cm^{-3}$ (bottom) and $1.5 \times 10^{10} cm^{-3}$ (top).

Segmented BEGe Dector

Example: Event located at r=20mm, ϕ =30⁰, z=20mm.

Thorough Scan for All the Detector volume

 $\phi = 60^{\circ}$

Segment 1 - Time Over Threshold

Segment 1 - Time Over Threshold

- Designed a novel detector geometry for future germanium detectors
- First prototype has been designed
- Development of PSA tools to study event topologies is on the way

Backup Slides

Design 4A vs Design 5A vs Design 6A

r dependence of the signal induced on the segments at $\phi=30^\circ$ and z=35 mm.

What's Pulse Shape Simulation...

Flow Chart of PSS

Electric Field Simulation

Bias + Impurity = Total

Installation of phase I detectors : 228Th calibration measurement

Detector	Total	HV _{dep} , V	HV, V	FWHM (2.6 MeV)		LC,
	mass, g			MCA	FADC	pA
Enriched						
ANG 1	958	3000	4000	3.6	3.8	40
ANG 2	2833	3000	3500	4.4-4.5	4.6	20
ANG 3	2391	3000	3500	4.4-4.6	4.9	<10
ANG 4	2372	2800	3200	4.0-4.5	4.4	<10
ANG 5	2746	1000	2000	4.0	4.2	<10
RG 1	2110	4200	4500	4.4-4.5	4.8	<10
RG 2	2166	3800	4000	4.7-5.0	5.1	<10
RG 3	2087	3300	3300	5.4 (6 µs)	6.1	1360
Non-enriched						
GTF 112	2957	2000	3000	3.7	4.3	<10

