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Outline

• Why are higher order corrections necessary? 

• Constructing loop amplitudes from diagrams

• Analyzing divergences

• Analytic vs numerical approach

• SecDec program

COMPUTATION OF MASTER INTEGRALS
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The LHC Era has begun...

COMPUTATION OF MASTER INTEGRALS

• We are probing energies which have never been reached at 

colliders before

• High experimental precision is possible due to high 

luminosities

• Precise theoretical predictions become necessary
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Higgs Production Channels

COMPUTATION OF MASTER INTEGRALS
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Higgs Production in Gluon Fusion

COMPUTATION OF MASTER INTEGRALS

Higgs Production in gluon fusion

Multi-dimensional parameter integrals need to be evaluated which
can contain UV, soft and collinear singularities

I LO (NLO in other processes)

I NLO

I NNLO
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Higher Order Corrections to the Higgs Production
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Higher Order Corrections to the Higgs Production

In some cases, higher order corrections can make a huge difference!
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Master Integrals at Higher Loop Order

Scattering amplitudes at one-loop

Scattering amplitudes at one-loop

=
P
dijkl +

P
cijk +

P
bij +

P
ai

Every one-loop amplitude in d = 4 can be decomposed as

Mn =
X

ijkl

dijkl Iijkl +
X

ijk

cijk Iijk +
X

ij

bij Iij +
X

i

ai Ii

Iijk... =

Z
dq

DiDjDk . . .

the basis of Master Integrals (MIs) Iijk... is known
the computation of the amplitude can be reduced to the problem of
computing the coefficients of this decomposition
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• Tiziano’s talk: @1-loop all master integrals are known

• Two and more loops: master integrals need to be 
found! 
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And make all its
columns massless
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Construct the Integrand - U
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• Find all connected 1-tree graphs by cutting L lines, where L 
is the number of loops
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Construct the Integrand - U
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Construct the Integrand - F
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• Find all 2-tree graphs by cutting L+1 lines of the graph and 
multiplying all Feynman parameters, which correspond to 
the cut propagators, with the incoming momentum flow
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The Full Integrand
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General Feynman Integral

I Graph infos are converted into tensorial Feynman integral
G

µ1...µR in D dimensions at L loops with N propagators to
power ⌫j of rank R

I After loop momentum integration, a generic scalar Feynman
integral

G =
(�1)N⌫

QN
j=1 �(⌫j)

�(N⌫ � LD/2)

1Z

0

NY

j=1

dxj x
⌫j�1
j �(1�

NX

l=1

xl)
UN⌫�(L+1)D/2(~x)

FN⌫�LD/2(~x)

where N⌫ =
PN

j=1 ⌫j and where U and F can be constructed
via topological cuts
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• The full integrand G after loop momentum integration in 
D dimensions with N propagators to power     ⌫j
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and
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Any Divergences?
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General Feynman Integral

I Graph infos are converted into tensorial Feynman integral
G

µ1...µR in D dimensions at L loops with N propagators to
power ⌫j of rank R

I After loop momentum integration, a generic scalar Feynman
integral

G =
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overall UV singularity

UV sub-divergence

IR divergence
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Sector Decomposition

• Problem: Divergences can overlap!
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Sector Decomposition

I Overlapping divergences are factorized
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I Iterated sector decomposition is done, where dimensionally
regulated soft, collinear and UV singularities are factored out
Hepp ’66, Binoth & Heinrich ’00
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• Result: After iterated sector decomposition procedure, 

dimensionally regulated soft, collinear and UV singularities 

are factored out
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Contour Deformation I

I For kinematics in the physical region, F can still vanish

FBubble = m

2(1 + t1)
2 � s t1 � i�

but a deformation of the integration contour

Re(z)

Im(z)

1

0

and Cauchy’s theorem can help
I

c
f (t)dt =

Z 1

0
f (t)dt +

Z 0

1

@z(t)

@t
f (z(t))dt = 0
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•When computing diagrams with more than one scale, 
   function     can still vanish
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Deformation of the Integration Contour
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Operational Sequence of SecDec 2.0
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SB, J. Carter, G. Heinrich
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Subtraction, Expansion, Numerical Integration

Subtraction
I The factorized poles in a subsector integrand I / U ,F are

extracted by subtraction (e.g. logarithmic divergence)

Z 1

0

dtj t
�1�bj✏
j I(tj , ✏) = �I(0, ✏)

bj✏
+

Z 1

0

dtj t
�1�bj✏
j (I(tj , ✏)� I(0, ✏))

Expansion

I After the extraction of poles, an expansion in the regulator ✏
is done

Numerical Integration

I Monte Carlo integrator programs containted in CUBA library
or BASES can be used for numerical integration
Hahn et al. ’04 ’11, Kawabata ’95
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Cuba 3.0
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Analytic vs Numerical Approach
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Analytical Numerical

Pro’s

Con’s

• get result for different 
kinematics in “no time”

• easier to automate
• classes of diagrams can 

be computed similarly

• complicated integrands 
may need approximation

• every integrand needs to 
be treated individually

• computation must be 
redone when changing 
kinematics

• speed vs accuracy
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Result for the House
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More Results: Non-planar 4-Point Diagram
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Results III: Massive Non-planar 6-propagator Graph
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More Results: Non-planar 2-Loop Box Diagram
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Results V: Non-planar Massive Two-loop Box
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Summary

• Higher order computations can lead to large corrections
• Integrands can be constructed via topological cuts
• Overlapping divergences can be factorized with the help of sector 

decomposition
• Dealing with multiple scales, an additional deformation of the 

integration contour becomes necessary
• SecDec 2.0 is a tool to numerically compute (master) diagrams 

with arbitrary kinematics

COMPUTATION OF MASTER INTEGRALS

What wasn’t mentioned:
• SecDec 2.0 can compute much more (also tensor integrals, 

infrared divergent subtraction terms for real radiation or other 
more general functions)
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Outlook

• Apply SecDec 2.0 to 2-loop corrections involving several 
mass scales, e.g. QCD/EW/MSSM corrections 

• Improve detection and treatment of problematic kinematic 
regions, e.g. close to a (leading Landau) singularity

• Improve speed of computation of diagrams

COMPUTATION OF MASTER INTEGRALS

Thank you for your attention.


