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Introduction

@ Scattering amplitudes are the backbone of high—energy
computatlons for colliders

| @
.

@ They can be computed in perturbation theory

AR

M ~ Mo +a Mo +a*> Mano + - - -

@ Amplitudes with many external legs are of much interest

o for testing QCD and the SM in different settings
@ as backgrounds to new physics processes
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Trees and loops

The computation of scattering amplitudes at LO
@ (usually) involves tree diagrams

@ is relatively easy (pure algebra)

@ the momentum flowing in all the internal lines is fixed by
momentum conservation

@ has a large uncertainty (sometimes of 0(100%)!!!)

@ is hardly enough for a quantitative prediction
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Trees and loops

The computation of scattering amplitudes at LO
@ (usually) involves tree diagrams

@ is relatively easy (pure algebra)
@ the momentum flowing in all the internal lines is fixed by
momentum conservation
@ has a large uncertainty (sometimes of 0(100%)!!!)
@ is hardly enough for a quantitative prediction
@ = we need at least NLO accuracy
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Trees and loops

The computation of scattering amplitudes at NLO
@ (usually) involves one-loop diagrams

@ is much more difficult

@ involves an integration over the loop momentum (not fixed by
momentum conservation)

@ has a smaller uncertainty (maybe ~ 10%)
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Trees and loops

The computation of scattering amplitudes at NNLO
@ (usually) involves two-loop diagrams

@ is much? more difficult: integration over two loop momenta

T. Peraro (MPI - Miinchen) Integrand Reduction Ringberg 2012



Scattering amplitudes at one-loop

@ A generic n-point one-loop amplitude

_ _ N(q)
M= [awde= [ 5 hmt

]\”3‘ ki+1

e involves an integration over the loop momentum ¢
e the Feynman denominators D; have the form

Di(q) = (g +pi)* —m;

@ When the number n of external legs becomes large
e the number of diagrams increases
e the number of denominators increases
e the numerator N(g) becomes more complicated
e performing the integration might seem a prohibitive task
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Scattering amplitudes at one-loop

=S diju

\:'

@ Every one-loop amplitude in d = 4 can be decomposed as

M":Z Iijkz-i-z Iijk-f—z Izj+z I;
ij i

ijkl ijk
dq
Lig.. = | ———
D;D;Dy . ..

e the basis of Master Integrals (MIs) 7;... is known
e the computation of the amplitude can be reduced to the problem of
computing the of this decomposition
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Integrand-level decomposition: OPP
=X + X + X »—Q—« +Z Q—«

ijki Cijk by
/DDDle Z/DDDk %:/D,-Dj

/An

@ The previous decomposition holds at the integral-level

ijkl
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Integrand-level decomposition: OPP
=X + X + X »—Q—« +Z Q—«

ijki Cijk by
/DDDle Z/DDDk %:/D,-Dj

@ The previous decomposition holds at the integral-level

@ An analogous decomposition holds at the integrand-level
[Ossola, Papadopoulos, Pittau (2007)]

B Aiiui(q) A (q) Ai(q)
Alg) = %; DD,DD; %: DDD; Z]: D.D

/An

ijkl
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Integrand-level decomposition: OPP
=X + X + X »—Q—« +Z Q—«

- ijkl ijk Ai(q)
Alg) = ZDl;DkD1+ZDJDDk Z Z D,

ijkl

@ The residues Aj;..

are polynomials in the components of ¢

have a known parametric form

contain the coefficients of the master integrals
= they can be found by polynomial fitting
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Finding the coefficients by cutting the loop

@ How to fit the coefficients efficiently?
e evaluate the integrand on multiple cuts

5
‘ What is a cut?

- " Cutting a loop propagator
Q :x‘ PN (roughly) means

‘ , ‘ |

LA () L sm)

' 4 ' Dl

Q :xj:( +z/&+\: (O~ + i.e. putting it on-shell
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Intermezzo: Loops from trees

@ The coefficients on the one-loop decomposition can be found by
evaluating the amplitudes on multiple cuts

e the cut loop propagators are put on-shell

T. Peraro (MPI - Minchen) Integrand Reduction Ringberg 2012
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Intermezzo: Loops from trees

@ The coefficients on the one-loop decomposition can be found by
evaluating the amplitudes on multiple cuts
e the cut loop propagators are put on-shell
o the integrand factorizes in a product of tree-level amplitudes
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Intermezzo: Loops from trees

@ The coefficients on the one-loop decomposition can be found by
evaluating the amplitudes on multiple cuts
e the cut loop propagators are put on-shell
o the integrand factorizes in a product of tree-level amplitudes

Loops from trees

If we want, we can compute a one-loop amplitude from products of
tree-level amplitudes
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Intermezzo n. 2: Trees from smaller trees (BCFW)

Britto, Cachazo, Feng(2004); Britto, Cachazo, Feng, Witten(2005)
@ Consider a tree-level amplitude M (ky, ..., k,)
@ shift two external momenta of a complex amount, such that
o the two external momenta remain on-shell
e an internal propagator P goes on-shell

kl—)i(1:k1+z7], kn%icn:knfzn

@ The original amplitude can be recursively factorized in products of
smaller amplitudes with
o shifted external momenta
e a smaller number of external legs (down to 3)

k3

kn—2

ka
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Summary of OPP

@ Every one-loop amplitude is a linear combination of known master

integrals
Z:Z zd,/B:(JrEc,,; +Ebl,*O¢ Ty G

@ The unknown coefficients of this linear combination can be found
by polynomial fitting at the integrand level

@ requires to solve linear systems of equations
@ An efficient way of doing the fit is by sampling the integrand on
solutions of multiple cuts
@ some loop propagators are put on-shell
o the systems of equations become much smaller
@ The whole amplitude can be computed without actually performing
the integration

T. Peraro (MPI - Miinchen) Integrand Reduction Ringberg 2012 10/16



Analytic and semi-analytic approach

@ The computation of the coefficients of the integrand
decomposition can be simplified by means of analytic methods

@ In triple, double, and single cuts the loop momentum is not
completely fixed by the on-shell constraints

“\ —\

1 freee parameter 2 freee parameters 3 freee parameters

@ Performing a Laurent expansion with respect to the free
parameters not fixed by the cut
e we obtain diagonal systems of equations
@ subtractions of higher-point contributions are simplified

P. Mastrolia, E. Mirabella, T. P. (2012)
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Semi-numeric implementation

@ If the analytic expression of the integrand is known, we can perform the
Laurent expansion (analytically or numerically) via polynomial division
neglecting the remainder

o first tests show an improved stability
@ A very simple example

Relative error as a function of m"2/s
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Extension to higher loops

How does this extend to higher loops?

@ Only few papers on the subject
[the first one in 2011 (Mastrolia, Ossola), at least other five in 2012 by several authors]

@ We have a similar integrand decomposition

[ N(CI) ] _ Z Aj i + Z Aj iy n
D,...D, Toop 4, D, ...D,, ) D; D;,D;,
{N(C]h%)] _ Z Aj i n Z AN .
D,...D, Ydoops i D;, ...Dj W D, ...D;

e at one-loop the residues A, ;,... sit over 4 or less denominators
e at two-loop the residues A;,;, .. sit over 8 or less denominators
o ...
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Integrand reduction at 2 loops

@ The decomposition at 2-loops (in d = 4 dimensions) is

N(ql ) 512):| l[ lg ll l7
N2 Ae7 — _|_

..........
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Integrand reduction at 2 loops

@ The decomposition at 2-loops (in d = 4 dimensions) is

N(q17612):| _ 11 .18 _|_ ll 17
@ The parametric form of the residues Ailiz... is not known
e it depends on the topology of the diagram
e it can be found by techniques of algebraic geometry
(Grébner bases, multivariate polynomial division, .. .)
[Y. Zhang (2012); P. Mastrolia, E. Mirabella, G. Ossola, T. P. (2012)]
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Integrand reduction at 2 loops

@ The decomposition at 2-loops (in d = 4 dimensions) is

N(ql ) 612):| _ 11 .18 _|_ ll 17
|:D1"‘D’l 2 loops ,'I,Z,;,’S D, ... ilz e
@ The parametric form of the residues 4,,;,... is not known
e it depends on the topology of the diagram
e it can be found by techniques of algebraic geometry
(Grébner bases, multivariate polynomial division, .. .)
[Y. Zhang (2012); P. Mastrolia, E. Mirabella, G. Ossola, T. P. (2012)]
@ We still evaluate the integrand on multiple cuts
o we start from 8-cuts to determine A,
@ we proceed with 7-cuts to determine A;

11...i7
o ...
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Integrand reduction at 2 loops

@ The decomposition at 2-loops (in d = 4 dimensions) is

N(q17612):| _ ll .18 _|_ ll 17
|:D1"‘D’l 2 loops ,'I,Z,;,’S D, ... ilz e
@ The parametric form of the residues 4,,;,... is not known
e it depends on the topology of the diagram
e it can be found by techniques of algebraic geometry
(Grébner bases, multivariate polynomial division, .. .)
[Y. Zhang (2012); P. Mastrolia, E. Mirabella, G. Ossola, T. P. (2012)]
@ We still evaluate the integrand on multiple cuts
o we start from 8-cuts to determine A,
e we proceed with 7-cuts to determine A, _;,
o ...
@ A complete basis of master integrals (MIs) is not known
o the reduction tells you which Mls you need
e the number of independent Mis can be further reduced with
techniques such as IBPs...
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Integrand reduction at 2 loops

@ The decomposition at 2-loops (in d = 4 dimensions) is

N(q17612):| _ ll .18 _|_ ll 17
|:D1"‘D'l 2 loops ,'1;8 D, ... ilz e
@ The parametric form of the residues 4,,;,... is not known
e it depends on the topology of the diagram
e it can be found by techniques of algebraic geometry
(Grébner bases, multivariate polynomial division, .. .)
[Y. Zhang (2012); P. Mastrolia, E. Mirabella, G. Ossola, T. P. (2012)]
@ We still evaluate the integrand on multiple cuts
o we start from 8-cuts to determine A,
e we proceed with 7-cuts to determine A, _;,
o ...
@ A complete basis of master integrals (MIs) is not known
o the reduction tells you which Mls you need
e the number of independent Mis can be further reduced with
techniques such as IBPs...
.. but eventually you have to compute some of them
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5-point amplitude in ' =4 SYM and NV = 8 SG

G. Ossola, P. Mastrolia, E. Mirabella, T. P. (to be published)

5 5 2 3

qn 0

3 3

@ 5-point amplitude in AV = 4 SYM
e we decomposed it in terms of 8-cut and 7-cut residues
@ 5-point amplitude in ' = 8 SG
e we decomposed it in terms of 8-cut, 7-cut and 6-cut residues

@ We found analytic and numeric results for the coefficients of the
integrand decomposition
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Summary and conclusions

@ The reduction at the integrand level is a general method we can
apply to any amplitude in any QFT
@ At one-loop
o allows to compute the amplitude without performing any (new)
integration
@ has been implemented in several codes [e.g. SAMURAI|
e is already producing results for LHC [GoSam, FormCalc, .. .]
e a simplified reduction via Laurent expansion can provide improved
stability
@ At higher loops

o the first results look promising

e applied to both planar and non-planar diagrams

@ analytic techniques such as the Laurent expansion and polynomial
division of the integrand can also simplify the computation at two
(and more?) loops

o ...work is still in progress!
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