Scattering Amplitudes at the Integrand Level

Tiziano Peraro

Max-Planck-Institut für Physik
Föhringer Ring 6, D-80805 München, Germany

Young Scientists Workshop 2012 Ringberg Castle

Alexander von Humboldt
Stiftung/Foundation

- P. Mastrolia, E. Mirabella, T. P., "Integrand reduction of one-loop scattering amplitudes through Laurent series expansion", JHEP 1206 (2012), arXiv:1203.0291
- P. Mastrolia, E. Mirabella, G. Ossola, T. P., "Scattering Amplitudes from Multivariate Polynomial Division", arXiv:1205.7087

Outline

(9) Introduction
(2) Scattering amplitudes at one-loop
(3) Integrand level approach at one loop (OPP)
4. Analytic and semi-analytic reduction at the integrand level
(5) Extension to higher loops

6 Summary and conclusions

Introduction

- Scattering amplitudes are the backbone of high-energy computations for colliders

- They can be computed in perturbation theory

$$
\mathcal{M} \sim \mathcal{M}_{\mathrm{LO}}+\alpha \mathcal{M}_{\mathrm{NLO}}+\alpha^{2} \mathcal{M}_{\mathrm{NNLO}}+\ldots
$$

- Amplitudes with many external legs are of much interest
- for testing QCD and the SM in different settings
- as backgrounds to new physics processes

Trees and loops

The computation of scattering amplitudes at LO

- (usually) involves tree diagrams

- is relatively easy (pure algebra)
- the momentum flowing in all the internal lines is fixed by momentum conservation
- has a large uncertainty (sometimes of $O(100 \%)!!!$)
- is hardly enough for a quantitative prediction

Trees and loops

The computation of scattering amplitudes at LO

- (usually) involves tree diagrams

- is relatively easy (pure algebra)
- the momentum flowing in all the internal lines is fixed by momentum conservation
- has a large uncertainty (sometimes of $O(100 \%)!!!$)
- is hardly enough for a quantitative prediction
- \Rightarrow we need at least NLO accuracy

Trees and loops

The computation of scattering amplitudes at NLO

- (usually) involves one-loop diagrams

- is much more difficult
- involves an integration over the loop momentum (not fixed by momentum conservation)
- has a smaller uncertainty (maybe $\sim 10 \%$)

Trees and loops

The computation of scattering amplitudes at NNLO

- (usually) involves two-loop diagrams

- is much ${ }^{2}$ more difficult: integration over two loop momenta

Scattering amplitudes at one-loop

- A generic n-point one-loop amplitude

$$
\mathcal{M}_{n} \equiv \int \mathcal{A}_{n}(q) d^{4} q \equiv \int \frac{N(q)}{D_{1}(q) \ldots D_{n}(q)} d^{4} q
$$

- involves an integration over the loop momentum q
- the Feynman denominators D_{i} have the form

$$
D_{i}(q)=\left(q+p_{i}\right)^{2}-m_{i}^{2}
$$

- When the number n of external legs becomes large
- the number of diagrams increases
- the number of denominators increases
- the numerator $N(q)$ becomes more complicated
- performing the integration might seem a prohibitive task

Scattering amplitudes at one-loop

- Every one-loop amplitude in $d=4$ can be decomposed as

$$
\begin{aligned}
\mathcal{M}_{n} & =\sum_{i j k l} d_{i j k l} I_{i j k l}+\sum_{i j k} c_{i j k} I_{i j k}+\sum_{i j} b_{i j} I_{i j}+\sum_{i} a_{i} I_{i} \\
I_{i j k \ldots} & =\int \frac{d q}{D_{i} D_{j} D_{k} \cdots}
\end{aligned}
$$

- the basis of Master Integrals (MIs) $I_{i j k \ldots}$... is known
- the computation of the amplitude can be reduced to the problem of computing the coefficients of this decomposition

Integrand-level decomposition: OPP

$$
\int \mathcal{A}_{n}(q)=\sum_{i j k l} \int \frac{d_{i j l}}{D_{i} D_{j} D_{k} D_{l}}+\sum_{i j k} \int \frac{c_{i j k}}{D_{i} D_{j} D_{k}}+\sum_{i j} \int \frac{b_{i j}}{D_{i} D_{j}}+\sum_{i} \int \frac{a_{i}}{D_{i}}
$$

- The previous decomposition holds at the integral-level

Integrand-level decomposition: OPP

$$
\int \mathcal{A}_{n}(q)=\sum_{i j k l} \int \frac{d_{i j l}}{D_{i} D_{j} D_{k} D_{l}}+\sum_{i j k} \int \frac{c_{i j k}}{D_{i} D_{j} D_{k}}+\sum_{i j} \int \frac{b_{i j}}{D_{i} D_{j}}+\sum_{i} \int \frac{a_{i}}{D_{i}}
$$

- The previous decomposition holds at the integral-level
- An analogous decomposition holds at the integrand-level [Ossola, Papadopoulos, Pittau (2007)]

$$
\mathcal{A}(q)=\sum_{i j k l} \frac{\Delta_{i j k l}(q)}{D_{i} D_{j} D_{k} D_{l}}+\sum_{i j k} \frac{\Delta_{i j k}(q)}{D_{i} D_{j} D_{k}}+\sum_{i j} \frac{\Delta_{i j}(q)}{D_{i} D_{j}}+\sum_{i} \frac{\Delta_{i}(q)}{D_{i}}
$$

Integrand-level decomposition: OPP

$$
\mathcal{A}(q)=\sum_{i j k l} \frac{\Delta_{i j k l}(q)}{D_{i} D_{j} D_{k} D_{l}}+\sum_{i j k} \frac{\Delta_{i j k}(q)}{D_{i} D_{j} D_{k}}+\sum_{i j} \frac{\Delta_{i j}(q)}{D_{i} D_{j}}+\sum_{i} \frac{\Delta_{i}(q)}{D_{i}}
$$

- The residues $\Delta_{i j \ldots}$
- are polynomials in the components of q
- have a known parametric form
- contain the coefficients of the master integrals
- \Rightarrow they can be found by polynomial fitting

Finding the coefficients by cutting the loop

- How to fit the coefficients efficiently?
- evaluate the integrand on multiple cuts

What is a cut?

Cutting a loop propagator (roughly) means

$$
\frac{1}{D_{i}} \rightarrow \delta\left(D_{i}\right)
$$

i.e. putting it on-shell

Intermezzo: Loops from trees

- The coefficients on the one-loop decomposition can be found by evaluating the amplitudes on multiple cuts
- the cut loop propagators are put on-shell

Intermezzo: Loops from trees

- The coefficients on the one-loop decomposition can be found by evaluating the amplitudes on multiple cuts
- the cut loop propagators are put on-shell
- the integrand factorizes in a product of tree-level amplitudes

Intermezzo: Loops from trees

- The coefficients on the one-loop decomposition can be found by evaluating the amplitudes on multiple cuts
- the cut loop propagators are put on-shell
- the integrand factorizes in a product of tree-level amplitudes

Loops from trees

If we want, we can compute a one-loop amplitude from products of tree-level amplitudes

Intermezzo n. 2: Trees from smaller trees (BCFW)

Britto, Cachazo, Feng(2004); Britto, Cachazo, Feng, Witten(2005)

- Consider a tree-level amplitude $\mathcal{M}\left(k_{1}, \ldots, k_{n}\right)$
- shift two external momenta of a complex amount, such that
- the two external momenta remain on-shell
- an internal propagator P goes on-shell

$$
k_{1} \rightarrow \hat{k}_{1}=k_{1}+z \eta, \quad k_{n} \rightarrow \hat{k}_{n}=k_{n}-z \eta
$$

- The original amplitude can be recursively factorized in products of smaller amplitudes with
- shifted external momenta
- a smaller number of external legs (down to 3)

Summary of OPP

- Every one-loop amplitude is a linear combination of known master integrals

- The unknown coefficients of this linear combination can be found by polynomial fitting at the integrand level
- requires to solve linear systems of equations
- An efficient way of doing the fit is by sampling the integrand on solutions of multiple cuts
- some loop propagators are put on-shell
- the systems of equations become much smaller
- The whole amplitude can be computed without actually performing the integration

Analytic and semi-analytic approach

- The computation of the coefficients of the integrand decomposition can be simplified by means of analytic methods
- In triple, double, and single cuts the loop momentum is not completely fixed by the on-shell constraints

1 freee parameter

2 freee parameters

3 freee parameters

- Performing a Laurent expansion with respect to the free parameters not fixed by the cut
- we obtain diagonal systems of equations
- subtractions of higher-point contributions are simplified
P. Mastrolia, E. Mirabella, T. P. (2012)

Semi-numeric implementation

- If the analytic expression of the integrand is known, we can perform the Laurent expansion (analytically or numerically) via polynomial division neglecting the remainder
- first tests show an improved stability
- A very simple example

Relative error as a function of $\mathrm{m}^{\wedge} 2 / \mathrm{s}$

Extension to higher loops

How does this extend to higher loops?

- Only few papers on the subject [the first one in 2011 (Mastrolia, Ossola), at least other five in 2012 by several authors]
- We have a similar integrand decomposition

$$
\begin{aligned}
{\left[\frac{N(q)}{D_{1} \ldots D_{n}}\right]_{1 \text { loop }} } & =\sum_{i_{1}, \ldots, i_{4}} \frac{\Delta_{i_{1} \ldots i_{4}}}{D_{i_{1}} \ldots D_{i_{4}}}+\sum_{i_{1}, i_{2}, i_{3}} \frac{\Delta_{i_{1} i_{2} i_{3}}}{D_{i_{1}} D_{i_{2}} D_{i_{3}}}+\ldots \\
{\left[\frac{N\left(q_{1}, q_{2}\right)}{D_{1} \ldots D_{n}}\right]_{2 \text { loops }} } & =\sum_{i_{1}, \ldots, i_{8}} \frac{\Delta_{i_{1} \ldots i_{8}}}{D_{i_{1}} \ldots D_{i_{8}}}+\sum_{i_{1}, \ldots, i_{7}} \frac{\Delta_{i_{1} \ldots i_{7}}}{D_{i_{1}} \ldots D_{i_{7}}}+\ldots
\end{aligned}
$$

- at one-loop the residues $\Delta_{i_{1} i_{2} \ldots}$ sit over 4 or less denominators
- at two-loop the residues $\Delta_{i_{1} i_{2} \ldots}$ sit over 8 or less denominators
- ...

Integrand reduction at 2 loops

- The decomposition at 2-loops (in $d=4$ dimensions) is

$$
\left[\frac{N\left(q_{1}, q_{2}\right)}{D_{1} \ldots D_{n}}\right]_{2 \text { loops }}=\sum_{i_{1}, \ldots, i_{8}} \frac{\Delta_{i_{1} \ldots i_{8}}}{D_{i_{1}} \ldots D_{i_{8}}}+\sum_{i_{1}, \ldots, i_{7}} \frac{\Delta_{i_{1} \ldots i_{7}}}{D_{i_{1}} \ldots D_{i_{7}}}+\ldots
$$

Integrand reduction at 2 loops

- The decomposition at 2-loops (in $d=4$ dimensions) is

$$
\left[\frac{N\left(q_{1}, q_{2}\right)}{D_{1} \ldots D_{n}}\right]_{2 \text { loops }}=\sum_{i_{1}, \ldots, i_{8}} \frac{\Delta_{i_{1} \ldots i_{8}}}{D_{i_{1}} \ldots D_{i_{8}}}+\sum_{i_{1}, \ldots, i_{7}} \frac{\Delta_{i_{1} \ldots i_{7}}}{D_{i_{1}} \ldots D_{i_{7}}}+\ldots
$$

- The parametric form of the residues $\Delta_{i_{1} i_{2} \ldots}$ is not known
- it depends on the topology of the diagram
- it can be found by techniques of algebraic geometry
(Gröbner bases, multivariate polynomial division, ...)
[Y. Zhang (2012); P. Mastrolia, E. Mirabella, G. Ossola, T. P. (2012)]

Integrand reduction at 2 loops

- The decomposition at 2-loops (in $d=4$ dimensions) is

$$
\left[\frac{N\left(q_{1}, q_{2}\right)}{D_{1} \ldots D_{n}}\right]_{2 \text { loops }}=\sum_{i_{1}, \ldots, i_{8}} \frac{\Delta_{i_{1} \ldots i_{8}}}{D_{i_{1}} \ldots D_{i_{8}}}+\sum_{i_{1}, \ldots, i_{7}} \frac{\Delta_{i_{1} \ldots i_{7}}}{D_{i_{1}} \ldots D_{i_{7}}}+\ldots
$$

- The parametric form of the residues $\Delta_{i_{1} i_{2} \ldots}$ is not known
- it depends on the topology of the diagram
- it can be found by techniques of algebraic geometry
(Gröbner bases, multivariate polynomial division, ...)
[Y. Zhang (2012); P. Mastrolia, E. Mirabella, G. Ossola, T. P. (2012)]
- We still evaluate the integrand on multiple cuts
- we start from 8 -cuts to determine $\Delta_{i_{1} \ldots i_{8}}$
- we proceed with 7 -cuts to determine $\Delta_{i_{1} \ldots i_{7}}$
- ...

Integrand reduction at 2 loops

- The decomposition at 2-loops (in $d=4$ dimensions) is

$$
\left[\frac{N\left(q_{1}, q_{2}\right)}{D_{1} \ldots D_{n}}\right]_{2 \text { loops }}=\sum_{i_{1}, \ldots, i_{8}} \frac{\Delta_{i_{1} \ldots i_{8}}}{D_{i_{1}} \ldots D_{i_{8}}}+\sum_{i_{1}, \ldots, i_{7}} \frac{\Delta_{i_{1} \ldots i_{7}}}{D_{i_{1}} \ldots D_{i_{7}}}+\ldots
$$

- The parametric form of the residues $\Delta_{i_{1} i_{2} \ldots .}$ is not known
- it depends on the topology of the diagram
- it can be found by techniques of algebraic geometry
(Gröbner bases, multivariate polynomial division, ...)
[Y. Zhang (2012); P. Mastrolia, E. Mirabella, G. Ossola, T. P. (2012)]
- We still evaluate the integrand on multiple cuts
- we start from 8 -cuts to determine $\Delta_{i_{1} \ldots i_{8}}$
- we proceed with 7 -cuts to determine $\Delta_{i_{1} \ldots i_{7}}$
- A complete basis of master integrals (MIs) is not known
- the reduction tells you which MIs you need
- the number of independent MIs can be further reduced with techniques such as IBPs...

Integrand reduction at 2 loops

- The decomposition at 2-loops (in $d=4$ dimensions) is

$$
\left[\frac{N\left(q_{1}, q_{2}\right)}{D_{1} \ldots D_{n}}\right]_{2 \text { loops }}=\sum_{i_{1}, \ldots, i_{8}} \frac{\Delta_{i_{1} \ldots i_{8}}}{D_{i_{1}} \ldots D_{i_{8}}}+\sum_{i_{1}, \ldots, i_{7}} \frac{\Delta_{i_{1} \ldots i_{7}}}{D_{i_{1}} \ldots D_{i_{7}}}+\ldots
$$

- The parametric form of the residues $\Delta_{i_{1} i_{2} \ldots .}$ is not known
- it depends on the topology of the diagram
- it can be found by techniques of algebraic geometry
(Gröbner bases, multivariate polynomial division, ...)
[Y. Zhang (2012); P. Mastrolia, E. Mirabella, G. Ossola, T. P. (2012)]
- We still evaluate the integrand on multiple cuts
- we start from 8 -cuts to determine $\Delta_{i_{1} \ldots i_{8}}$
- we proceed with 7 -cuts to determine $\Delta_{i_{1} \ldots i_{7}}$
- A complete basis of master integrals (MIs) is not known
- the reduction tells you which MIs you need
- the number of independent Mls can be further reduced with techniques such as IBPs. . .
- ... but eventually you have to compute some of them

5-point amplitude in $\mathcal{N}=4 \mathrm{SYM}$ and $\mathcal{N}=8$ SG

G. Ossola, P. Mastrolia, E. Mirabella, T. P. (to be published)

- 5-point amplitude in $\mathcal{N}=4 \mathrm{SYM}$
- we decomposed it in terms of 8-cut and 7-cut residues
- 5-point amplitude in $\mathcal{N}=8 \mathrm{SG}$
- we decomposed it in terms of 8-cut, 7-cut and 6-cut residues
- We found analytic and numeric results for the coefficients of the integrand decomposition

Summary and conclusions

- The reduction at the integrand level is a general method we can apply to any amplitude in any QFT
- At one-loop
- allows to compute the amplitude without performing any (new) integration
- has been implemented in several codes [e.g. SAMURAI]
- is already producing results for LHC [GoSam, FormCalc, ...]
- a simplified reduction via Laurent expansion can provide improved stability
- At higher loops
- the first results look promising
- applied to both planar and non-planar diagrams
- analytic techniques such as the Laurent expansion and polynomial division of the integrand can also simplify the computation at two (and more?) loops
- ... work is still in progress!

