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Introduction

Introduction

Scattering amplitudes are the backbone of high–energy
computations for colliders

M

They can be computed in perturbation theory

M∼MLO + αMNLO + α2MNNLO + . . .

Amplitudes with many external legs are of much interest
for testing QCD and the SM in different settings
as backgrounds to new physics processes
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Introduction

Trees and loops

The computation of scattering amplitudes at LO
(usually) involves tree diagrams

= + + . . .

is relatively easy (pure algebra)
the momentum flowing in all the internal lines is fixed by
momentum conservation
has a large uncertainty (sometimes of O(100%)!!!)
is hardly enough for a quantitative prediction

⇒ we need at least NLO accuracy
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Introduction

Trees and loops

The computation of scattering amplitudes at NLO
(usually) involves one-loop diagrams

= + + . . .

+ . . .+

is much more difficult
involves an integration over the loop momentum (not fixed by
momentum conservation)
has a smaller uncertainty (maybe ∼ 10%)
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Introduction

Trees and loops

The computation of scattering amplitudes at NNLO
(usually) involves two-loop diagrams

= + + . . .

+ . . .+

+ . . .+

is much2 more difficult: integration over two loop momenta
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Scattering amplitudes at one-loop

Scattering amplitudes at one-loop

A generic n-point one-loop amplitude

Mn ≡
∫
An(q) d4q ≡

∫
N(q)

D1(q) . . .Dn(q)
d4q

q
k1

ki ki+1

kn

involves an integration over the loop momentum q
the Feynman denominators Di have the form

Di(q) = (q + pi)
2 − m2

i

When the number n of external legs becomes large
the number of diagrams increases
the number of denominators increases
the numerator N(q) becomes more complicated
performing the integration might seem a prohibitive task
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Scattering amplitudes at one-loop

Scattering amplitudes at one-loop

=
∑
dijkl +

∑
cijk +

∑
bij +

∑
ai

Every one-loop amplitude in d = 4 can be decomposed as

Mn =
∑

ijkl

dijkl Iijkl +
∑

ijk

cijk Iijk +
∑

ij

bij Iij +
∑

i

ai Ii

Iijk... =

∫
dq

DiDjDk . . .

the basis of Master Integrals (MIs) Iijk... is known
the computation of the amplitude can be reduced to the problem of
computing the coefficients of this decomposition
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Integrand level approach at one loop (OPP)

Integrand-level decomposition: OPP

=
∑

+
∑

+
∑

+
∑

∫
An(q) =

∑

ijkl

∫
dijkl

DiDjDkDl
+
∑

ijk

∫
cijk

DiDjDk
+
∑

ij

∫
bij

DiDj
+
∑

i

∫
ai

Di

The previous decomposition holds at the integral-level

An analogous decomposition holds at the integrand-level
[Ossola, Papadopoulos, Pittau (2007)]

A(q) =
∑

ijkl

∆ijkl(q)

DiDjDkDl
+
∑

ijk

∆ijk(q)

DiDjDk
+
∑

ij

∆ij(q)

DiDj
+
∑

i

∆i(q)

Di
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Integrand level approach at one loop (OPP)

Integrand-level decomposition: OPP

=
∑

+
∑

+
∑

+
∑

A(q) =
∑

ijkl

∆ijkl(q)

DiDjDkDl
+
∑

ijk

∆ijk(q)

DiDjDk
+
∑

ij

∆ij(q)

DiDj
+
∑

i

∆i(q)

Di

The residues ∆ij...

are polynomials in the components of q
have a known parametric form
contain the coefficients of the master integrals
⇒ they can be found by polynomial fitting
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Integrand level approach at one loop (OPP)

Finding the coefficients by cutting the loop

=
∑

+
∑

+
∑

+
∑

How to fit the coefficients efficiently?
evaluate the integrand on multiple cuts

=
∑

+

=
∑

+
∑

+

=
∑

+
∑

+
∑

+

=

What is a cut?
Cutting a loop propagator
(roughly) means

1
Di
→ δ(Di)

i.e. putting it on-shell
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Integrand level approach at one loop (OPP)

Intermezzo: Loops from trees

The coefficients on the one-loop decomposition can be found by
evaluating the amplitudes on multiple cuts

the cut loop propagators are put on-shell

the integrand factorizes in a product of tree-level amplitudes

=

×

×

Loops from trees
If we want, we can compute a one-loop amplitude from products of
tree-level amplitudes
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Integrand level approach at one loop (OPP)

Intermezzo n. 2: Trees from smaller trees (BCFW)

Britto, Cachazo, Feng(2004); Britto, Cachazo, Feng, Witten(2005)

Consider a tree-level amplitudeM(k1, . . . , kn)
shift two external momenta of a complex amount, such that

the two external momenta remain on-shell
an internal propagator P goes on-shell

k1 → k̂1 = k1 + z η, kn → k̂n = kn − z η

The original amplitude can be recursively factorized in products of
smaller amplitudes with

shifted external momenta
a smaller number of external legs (down to 3)

= ×
j

k1

k2

k3
kn−2

kn−1

kn k̂1

k2

kj kj+1

kn−1

k̂n

P P
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Integrand level approach at one loop (OPP)

Summary of OPP

Every one-loop amplitude is a linear combination of known master
integrals

=
∑
dijkl +

∑
cijk +

∑
bij +

∑
ai

The unknown coefficients of this linear combination can be found
by polynomial fitting at the integrand level

requires to solve linear systems of equations
An efficient way of doing the fit is by sampling the integrand on
solutions of multiple cuts

some loop propagators are put on-shell
the systems of equations become much smaller

The whole amplitude can be computed without actually performing
the integration
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Analytic and semi-analytic reduction at the integrand level

Analytic and semi-analytic approach

The computation of the coefficients of the integrand
decomposition can be simplified by means of analytic methods
In triple, double, and single cuts the loop momentum is not
completely fixed by the on-shell constraints

1 freee parameter 2 freee parameters 3 freee parameters

Performing a Laurent expansion with respect to the free
parameters not fixed by the cut

we obtain diagonal systems of equations
subtractions of higher-point contributions are simplified

P. Mastrolia, E. Mirabella, T. P. (2012)
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Analytic and semi-analytic reduction at the integrand level

Semi-numeric implementation

If the analytic expression of the integrand is known, we can perform the
Laurent expansion (analytically or numerically) via polynomial division
neglecting the remainder

first tests show an improved stability

A very simple example

m2/s → large
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Extension to higher loops

Extension to higher loops

How does this extend to higher loops?
Only few papers on the subject
[the first one in 2011 (Mastrolia, Ossola), at least other five in 2012 by several authors]

We have a similar integrand decomposition
[

N(q)

D1 . . .Dn

]

1 loop
=

∑

i1,...,i4

∆i1...i4

Di1 . . .Di4
+
∑

i1,i2,i3

∆i1i2i3

Di1 Di2 Di3
+ . . .

[
N(q1, q2)

D1 . . .Dn

]

2 loops
=

∑

i1,...,i8

∆i1...i8

Di1 . . .Di8
+
∑

i1,...,i7

∆i1...i7

Di1 . . .Di7
+ . . .

at one-loop the residues ∆i1i2... sit over 4 or less denominators
at two-loop the residues ∆i1i2... sit over 8 or less denominators
. . .
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Extension to higher loops

Integrand reduction at 2 loops

The decomposition at 2-loops (in d = 4 dimensions) is
[

N(q1, q2)

D1 . . .Dn

]

2 loops
=

∑

i1,...,i8

∆i1...i8

Di1 . . .Di8
+
∑

i1,...,i7

∆i1...i7

Di1 . . .Di7
+ . . .

The parametric form of the residues ∆i1i2... is not known
it depends on the topology of the diagram
it can be found by techniques of algebraic geometry
(Gröbner bases, multivariate polynomial division, . . . )

[Y. Zhang (2012); P. Mastrolia, E. Mirabella, G. Ossola, T. P. (2012)]

We still evaluate the integrand on multiple cuts
we start from 8-cuts to determine ∆i1...i8
we proceed with 7-cuts to determine ∆i1...i7
. . .

A complete basis of master integrals (MIs) is not known
the reduction tells you which MIs you need
the number of independent MIs can be further reduced with
techniques such as IBPs. . .

. . . but eventually you have to compute some of them

T. Peraro (MPI - München) Integrand Reduction Ringberg 2012 14 / 16
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Extension to higher loops

5-point amplitude in N = 4 SYM and N = 8 SG

G. Ossola, P. Mastrolia, E. Mirabella, T. P. (to be published)

q2

q1

1

2

3

4

5

q1

3

4
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1
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2 3
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5

1

q2q1

5-point amplitude in N = 4 SYM

we decomposed it in terms of 8-cut and 7-cut residues

5-point amplitude in N = 8 SG

we decomposed it in terms of 8-cut, 7-cut and 6-cut residues

We found analytic and numeric results for the coefficients of the
integrand decomposition
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Summary and conclusions

Summary and conclusions

The reduction at the integrand level is a general method we can
apply to any amplitude in any QFT
At one-loop

allows to compute the amplitude without performing any (new)
integration
has been implemented in several codes [e.g. SAMURAI]
is already producing results for LHC [GoSam, FormCalc, . . . ]
a simplified reduction via Laurent expansion can provide improved
stability

At higher loops
the first results look promising
applied to both planar and non-planar diagrams
analytic techniques such as the Laurent expansion and polynomial
division of the integrand can also simplify the computation at two
(and more?) loops
. . . work is still in progress!
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