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Is there any alternative to an analog
calorimeter based on scintillators?

What is an RPC and how does it work?

The FastRPC setup

Why do we want to repeat the T3B
experiment with a different detector?

Next steps



We already saw that we need a huge amount of
channels for particle flow, why don’t we increase
that by another order of magnitude?

And at the same time reduce the data size?
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We already saw that we need a huge amount of
channels for particle flow, why don’t we increase
that by another order of magnitude?

And at the same time reduce the data size?
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10 times more channels?!
If ye ar’ kiddin’ ye’ll walk
the plank!

Just switch to a Digital
Hadronic CALorimeter!
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DHCAL: 38 layers 100x100 cm? with 1x1 cm? pads =

400k channels just for the prototype!

(ATLAS HCAL 10k)




DHCAL: 38 layers 100x100 cm? with 1x1 cm? pads =

400k channels just for the prototype!
(ATLAS HCAL 10k)

i et s And yet, thanks to
{-;Ju U = dedicated ASICS for
MR L —— . serialization and zero
suppression the data
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Gas mixture: R134A 94.5%, isobutane 5.0%, SF, 0.5%
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Prevent secondary photons to
develop to streamers, therefore:
photon absorption

=> quencher gases!
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KPC

Prevent secondary photons to
develop to streamers, therefore:

photon absorption

=> quencher gases!

e e Ye better collect all ye
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== photons before they
— ——Streamer— e scuttle ye detector
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ower Cost

DHCAL

e Easier calibration
e Smaller data size

High dark noise

e Easier to operate (no
HV, gas mixtures...)

e Easier to simulate

AHCAL
e More Information
 Little to no dead time
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FazrKPFT

* 15 3x3 cm? tiles, same geometry as T3B
e Same analog readout with ps6000 picoscope
e Same RPC as the DHCAL
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FazrKP T

for preamps

Prea
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FazrKP T

for preamps

Prea
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FazrKPFT

* External trigger using 2 10x10 cm? scintillator
in front of the DHCAL

e 1.25GHz 8bit Picoscope readout (15 tiles plus
check on the scintillator coincidence)
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FazrKPFT

* External trigger using 2 10x10 cm? scintillator
in front of the DHCAL

e 1.25GHz 8bit Picoscope readout (15 tiles plus
check on the scintillator coincidence)

Ye landlubber, can ye go
below 1ns with ye trigger?
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FazrKPFT

e DHCAL can’t resolve more than 10 MHz

e Still lot of issues with RPC montecarlo
simulations

800ps analog readout solves those problems!

But for this, 15 tiles produces more data than
the 400k channel DHCAL prototype!
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Why TdE ugein?

* Crosscheck is always good

* Proof of principle that hadronic shower timing
measurements can be achieved with RPC

e Neutron contribution much smaller than
scintillator devices
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Muons >1.5Mio 3Mio

Hadrons 16Mio 7Mio

e Very good commissioning run at PS (0-10GeV)
e Tricky run at SPS (20-180 GeV)

* Smaller statistic at high energy because the
rate for the DHCAL could not exceed ~100Hz
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Sample millions of trigger events

Cleaning the data: apply filtering on the data
sample (coincidences and FFT)

Find rising edge with threshold (eventually with
or 4t order interpolation over few bins)

Fill an histogram with the time distribution

3rd
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Muen Kun Extiraple

ARS77/0

b

...................................... SR e e ke

31: ChannelA [ ™77 histo
] Entries 3140
Mean 4348
RMS 1.057
% f ndf 71519
Constant 1499+ 35.5
Mean 434.7+£ 0.0
Sigma 08157+ 0.0125

4% ass  4Et

w
"

1000

histo i

Entries 2427 ]
Mean 4.t I
RMS 0.987
| 4% ¢ nat 740319 [l
Constant 1134+ 31.5
Mean 4347400 []
Sigma 08264+ 0.0153

H

aas a8
time in osci units

o T
time in osc units
B | 5 ) | L H

;svafn LH- T PR R histo

& : : Entries 854
280

Mean 434.3
300 | RMS 0.9799
5ib % | ndf 305917

150

100

IIIIIIIlllllll'llll]llllllllllllllllll

Constant  426.2+ 189
Mean 4343100
Sigma 0.7704+ 0.0214

445 450 ass EE]

fime in esci units

|

WSlz?h&nnle ||| hiStO

5 i| Entries 145
: Mean 434.3
i RS 1.623
%% | ndf 515715
| Constant 68.74 1+ 7.68
Mean 434.14 0.1
Sigma  0.8116 4 0.0594

§ - - - - -

arere w07 Mrarar rarermm s rorarers avrarars srrererm
A30 435 440 445 450 455 460 465

time In osci units

38



Muen Kun Extiraple
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Muen Kun Extiraple
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Penk Helgrh

Signal height distribution for muons - center tile
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dh

Nexr Sreps

Filter out all the noise events

Time of first hit analysis: create histograms with
the time distribution of the rising edge of all
signals

Calibrate: use the muon data to understand
statistical and sistematic uncertanties

Simulate: Compare the results with montecarlo
and T3B results

Synchronize with DHCAL events to gain position
and topology of the shower informations
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