Top quark threshold scan at future linear accelerators

Michal Tesař

Max-Planck-Intitut für Physik Young Scientist Workshop Ringberg Castle July 24th 2012

Outline

- Introduction
- Puture linear colliders
- The top quark
- Top threshold scan
- Summary

Motivation & the goal

Top quark mass:

- cannot be calculated from the Standard Model, it is an input parameter
- important for calculation of electroweak radiative corrections
- connected to strong coupling constant, Higgs Yuakawa coupling, Higgs mass, etc.
- issues regarding Top mass definitions

Motivation & the goal

Top quark mass:

Introduction

- cannot be calculated from the Standard Model, it is an input parameter
- important for calculation of electroweak radiative corrections
- connected to strong coupling constant, Higgs Yuakawa coupling, Higgs mass, etc.
- issues regarding Top mass definitions

Goal of the simulation:

⇒ determination of statistical and systematical uncertainties of the top quark mass and the strong coupling constant measurements at future linear colliders

Motivation & the goal

Top quark mass:

Introduction

- cannot be calculated from the Standard Model, it is an input parameter
- important for calculation of electroweak radiative corrections
- connected to strong coupling constant, Higgs Yuakawa coupling, Higgs mass, etc.
- issues regarding Top mass definitions

Goal of the simulation:

⇒ determination of statistical and systematical uncertainties of the top quark mass and the strong coupling constant measurements at future linear colliders

Method: scan of top quark production cross-section around production threshold energy (2× Top mass)

Top quark reconstruction

- top quark decays $(t \rightarrow Wb)$ before it hadronizes
- ⇒ its mass can be determined directly from its decay products
 - $W \rightarrow 2$ jets or jet + lepton, $b \rightarrow$ jet

Top quark reconstruction

- top quark decays $(t \rightarrow Wb)$ before it hadronizes
- ⇒ its mass can be determined directly from its decay products
 - $W \rightarrow 2$ jets or jet + lepton, $b \rightarrow$ jet

Hadron accelerators

- experiments must deal with high QCD background
- ⇒ usually, final states with one or two leptons are used for the analyses
- ⇒ missing energy taken out by neutrino
- ⇒ lower total branching fraction → lower integrated luminosity

Top quark measurement at linear lepton colliders

- lepton collider experimental conditions are favorable for the Top mass measurement
 - low background compared to hadron colliders
 - better defined initial state of the collision.
- thanks to low background at e⁺e⁻ accelerators, so called "particle flow" algorithms can be employed
- ⇒ high jet energy resolution

Top quark measurement at linear lepton colliders

- lepton collider experimental conditions are favorable for the Top mass measurement
 - low background compared to hadron colliders
 - better defined initial state of the collision.
- thanks to low background at e⁺e⁻ accelerators, so called "particle flow" algorithms can be employed
- ⇒ high jet energy resolution

Two Top mass measurement alternatives:

- invariant mass reconstruction
- threshold scan

Top mass measurement alternatives

- Top mass is not unambiguously defined
- ⇒ cross-check of several measurement methods needed

Invariant mass reconstruction

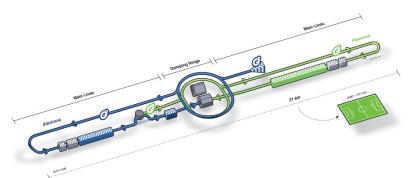
- + experimentally well defined
- + can be conducted at any above-threshold energy
- + high integrated luminosity
- cannot determine which Top mass was measured

Top mass measurement alternatives

- Top mass is not unambiguously defined
- ⇒ cross-check of several measurement methods needed

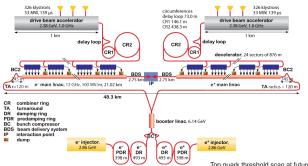
Invariant mass reconstruction

- + experimentally well defined
- + can be conducted at any above-threshold energy
- + high integrated luminosity
- cannot determine which Top mass was measured

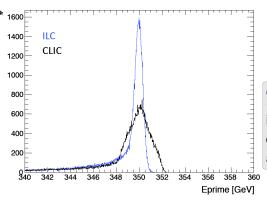

Threshold scan:

- theoretically well understood
- + potential of simultaneous measurement of correlated quantities
- together with known Top invariant mass can shed light on Top mass definitions
- needs a dedicated accelerator run (Higgs measurements also possible)

International Linear Collider (ILC)


- $\sqrt{s} = 500$ GeV, length 31 km
- $\sqrt{s} = 1$ TeV, length ~53 km (after upgrade)
- two interchangeable detector systems
- acceleration by classical super-conducting RF cavities

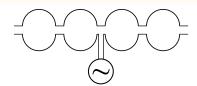
 $A_{p} \cdot \Delta_{q \geqslant \frac{1}{2}} t$


Compact Linear Collider (CLIC)

- \sqrt{s} =500 GeV, length 13 km (first construction stage)
- $\sqrt{s} = 3$ TeV, length 48 km (after extension)
- "two beam acceleration" technology
- extremely short bunch spacing (0.5 ns)
- ⇒ high demands on detector systems

ILC anc CLIC beam spectra (BS)

 the CLIC beam spectrum has a broader peak then ILC BS


Question:

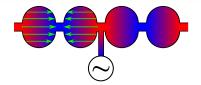
is it possible at all to conduct a Top threshold scan at the CLIC?

ILC:


- should use technology of classical super-conducting RF cavities
- average electrical field gradient for $\sqrt{s} = 500 \text{ GeV}$ is 31.5 MV/m

ILC:

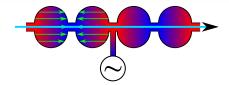
- should use technology of classical super-conducting RF cavities
- average electrical field gradient for $\sqrt{s} = 500$ GeV is 31.5 MV/m



Summary

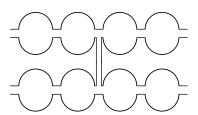
ILC:

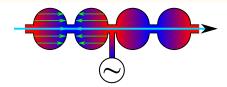
- should use technology of classical super-conducting RF cavities
- average electrical field gradient for $\sqrt{s} = 500$ GeV is 31.5 MV/m



Summary

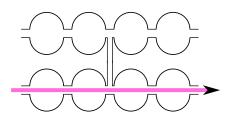
ILC:

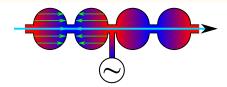

- should use technology of classical super-conducting RF cavities
- average electrical field gradient for $\sqrt{s} = 500$ GeV is 31.5 MV/m



ILC:

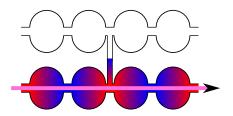
- should use technology of classical super-conducting RF cavities
- average electrical field gradient for $\sqrt{s} = 500$ GeV is 31.5 MV/m

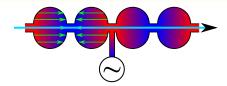



- due to limitations of RF cavities:
- ⇒ two beam acceleration

ILC:

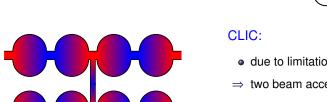
- should use technology of classical super-conducting RF cavities
- average electrical field gradient for $\sqrt{s} = 500$ GeV is 31.5 MV/m

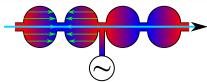



- due to limitations of RF cavities:
- ⇒ two beam acceleration
 - low energy/high intensity beam

ILC:

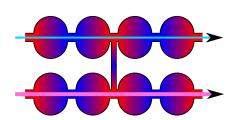
- should use technology of classical super-conducting RF cavities
- average electrical field gradient for $\sqrt{s} = 500$ GeV is 31.5 MV/m

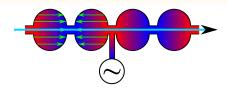



- due to limitations of RF cavities:
- ⇒ two beam acceleration
 - low energy/high intensity beam

ILC:

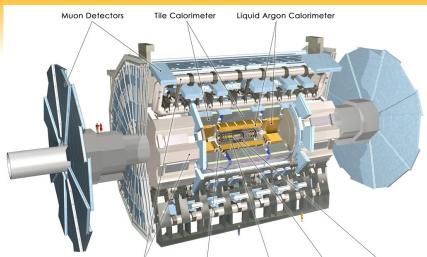
- should use technology of classical super-conducting RF cavities
- average electrical field gradient for $\sqrt{s} = 500 \text{ GeV}$ is 31.5 MV/m




- due to limitations of RF cavities:
- ⇒ two beam acceleration
 - low energy/high intensity beam

ILC:

- should use technology of classical super-conducting RF cavities
- average electrical field gradient for $\sqrt{s} = 500$ GeV is 31.5 MV/m

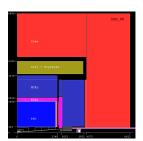


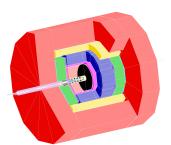
- due to limitations of RF cavities:
- ⇒ two beam acceleration
- low energy/high intensity beam \(\frac{1}{2}\)
- → high energy/low intensity beam

Future linear colliders The top quark Top threshold scan Introduction Summary

The ATLAS detector

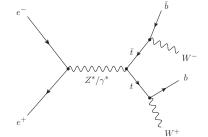
Solenoid Magnet


SCT Tracker Pixel Detector TRT Tracker

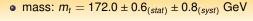

h. Ag≥±£

International Large Detector (ILD)

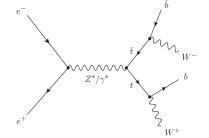
- effort of ILC and CLIC collaboration overlap extensively
- CLIC uses modified ILC detectors
- despite classical onion design of the detector, new concepts are employed to meet the demands
 - · highly granular calorimeters
 - high resolution tracker
- ⇒ excellent jet energy resolution



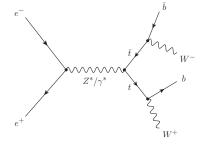
Top quark properties


• lifetime:
$$\tau_{life} = 10^{-24} \text{ s}$$

• hadronization time: $\tau_{had} = 10^{-23} \text{ s}$

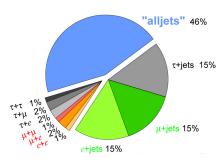

Top quark properties

• lifetime:
$$\tau_{life} = 10^{-24} \text{ s}$$


• hadronization time:
$$\tau_{had} = 10^{-23} \text{ s}$$

⇒ Top mass can be measured directly by reconstructing decay products' invariant mass

Top quark properties

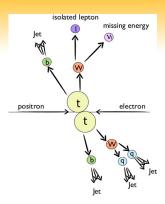

• mass:
$$m_t = 172.0 \pm 0.6_{(stat)} \pm 0.8_{(syst)}$$
 GeV

- width: Γ_t < 13.1 GeV
- lifetime: $\tau_{life} = 10^{-24} \text{ s}$
- hadronization time: $\tau_{had} = 10^{-23} \text{ s}$
- ⇒ decays before hadronization
- ⇒ Top mass can be measured directly by reconstructing decay products' invariant mass
- $t\bar{t}$ production cross-section (at $\sqrt{s_{e^+e^-}} = 2m_t$): 960 fb
- decay mode: $t \rightarrow Wb$

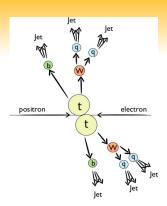
Top decay products

- b quark creates always a b-jet
- ⇒ event signature is entirely given the W boson decay:

Hadron colliders:


- hard to pick out tt
 pairs from QCD background
- one and two-lepton final states are used

Lepton colliders:


- $t\bar{t}$ pairs easy to identify
- concentrate on large branching fractions
- low missing energy

W decays used for reconstruction

- 4-jet final state (BR = 45%)
- identified by isolated lepton and b-jet

- 6-jet final state (BR = 46%)
- identified by b-jet and reconstructed jet energy originating from W decay

Top quark mass definitions

pole mass

- defined as the pole of the renormalized quark propagator for $p \to M$ ("rest mass")
- has an internal ambiguity $\sim \Lambda_{OCD}$
- · usage at low energies is not completely correct

Top quark mass definitions

pole mass

- defined as the pole of the renormalized quark propagator for $p \to M$ ("rest mass")
- has an internal ambiguity $\sim \Lambda_{OCD}$
- · usage at low energies is not completely correct

• MS mass

- obtained from "Minimal Subtraction" renormalization scheme
- fits for calculations with energetic quarks

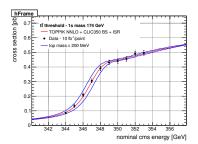
Top quark mass definitions

pole mass

- defined as the pole of the renormalized quark propagator for $p \rightarrow M$ ("rest mass")
- has an internal ambiguity $\sim \Lambda_{OCD}$
- · usage at low energies is not completely correct

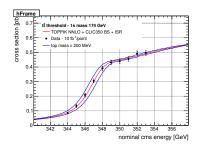
MS mass

- obtained from "Minimal Subtraction" renormalization scheme
- fits for calculations with energetic quarks

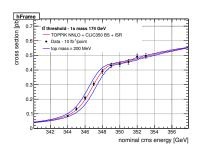

1S mass

- defined as half of the mass of fictitious ³S₁ toponium ground state for a stable quark
- position of the total $t\bar{t}$ production cross section peak remains stable if expressed in terms of 1S mass

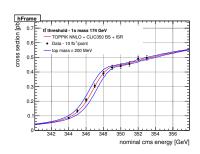
Principle of the threshold scan template fit


 top quark production cross-sections are "measured" around the expected tt pair creation threshold

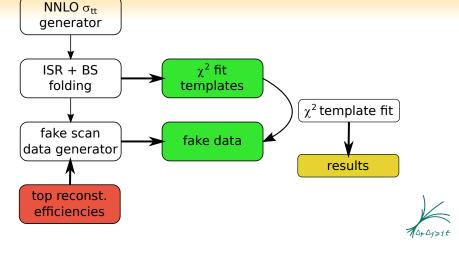
Principle of the threshold scan template fit


- top quark production cross-sections are "measured" around the expected tt pair creation threshold
- in parallel, the many of these dependencies are simulated with different parameter values (m_t, α_s, ...)
- ⇒ fit template

Principle of the threshold scan template fit


- top quark production cross-sections are "measured" around the expected t\(\bar{t}\) pair creation threshold
- in parallel, the many of these dependencies are simulated with different parameter values (m_t, α_s, ...)
- ⇒ fit template
 - the "measured" data points are fitted with the templates
 - top mass and α_s are extracted from the fits

Δp.Δq≥±t


Principle of the threshold scan template fit

- top quark production cross-sections are "measured" around the expected t\(\textit{t}\) pair creation threshold
- in parallel, the many of these dependencies are simulated with different parameter values (m_t, α_s, ...)
- ⇒ fit template
 - the "measured" data points are fitted with the templates
 - top mass and α_s are extracted from the fits
 - in principle, also further parameters fan be fitted, but would need higher measurement precision

Simulation procedure scheme

Top mass reconstruction: signal and background at $\sqrt{s} = 350$ GeV

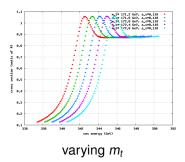
- signal and background events were simulated
- highly optimized Top reconstruction has been conducted (by Katja Seidel)

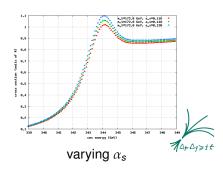
process type	$e^+e^- ightarrow$	cross-section* σ (fb)
signal	t₹	400
background	WW	11400
background	ZZ	673
background	WWZ	10
background	qā	24500

cross-sections corrected for Initial State Radiation (ISR) and beam spectrum

Top mass reconstruction: signal and background at $\sqrt{s} = 350$ GeV

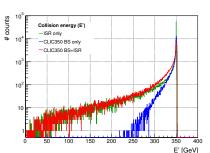
- signal and background events were simulated
- highly optimized Top reconstruction has been conducted (by Katja Seidel)
- ⇒ resulting Top reconstruction- and background rejection efficiencies were used for further simulation

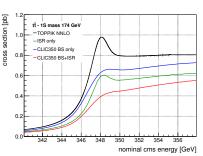

process type	$e^+e^- \rightarrow$	cross-section* σ (fb)
signal	tī	400
background	WW	11400
background	ZZ	673
background	WWZ	10
background	qq	24500


cross-sections corrected for Initial State Radiation (ISR) and beam spectrum

$t \bar t$ production cross-section generator

- theory based next-to-next-to-leading order (NNLO) calculation ("TOPPIK" by Hoang & Teubner, Phys.Rev.D60:114027,1999)
- input parameters: Top mass, Top Width, strong coupling constant, Higgs mass, Yukawa coupling, (LO, NLO, NNLO)
- production channel: $e^+e^- \rightarrow Z^*/\gamma^* \rightarrow t\bar{t}$

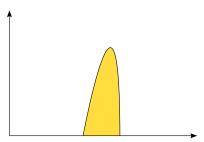



Effects of ISR and BS on cross-section shape

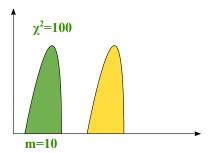
to get $t\bar{t}$ production cross-section at a e^+e^- collider, two effects have to be taken into account

- Initial State Radiation (ISR)
- Beam Spectra (BS)

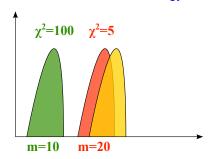
these two distributions are folded with pure physical cross-section



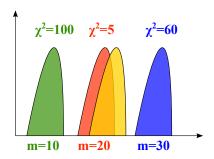
measured cross-section simulated cross-section


measured cross-section simulated cross-section
$$\chi^2 = \sum_{n}^{Nbins} \left(\frac{\sigma_n^{meas} - \sigma_n^{template}}{\Gamma_n^{meas}} \right)^2$$
 measured cross-section uncertainty

 σ_n^{meas} measured cross-section $\sigma_n^{template}$ simulated cross-section $\chi^2 = \frac{1}{2}$

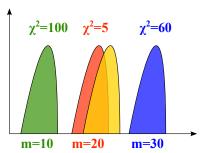

$$\chi^{2} = \sum_{n}^{Nbins} \left(\frac{\sigma_{n}^{meas} - \sigma_{n}^{template}}{\Gamma_{n}^{meas}} \right)^{2}$$

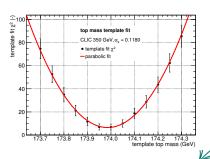
measured cross-section simulated cross-section


measured cross-section simulated cross-section
$$\chi^2 = \sum_{n}^{Nbins} \left(\frac{\sigma_n^{meas} - \sigma_n^{template}}{\Gamma_n^{meas}} \right)^2$$
 measured cross-section uncertainty

 σ_n^{meas} measured cross-section simulated cross-section

measured cross-section simulated cross-section
$$\chi^2 = \sum_{n}^{Nbins} \left(\frac{\sigma_n^{meas} - \sigma_n^{template}}{\Gamma_n^{meas}} \right)^2$$
 measured cross-section uncertainty

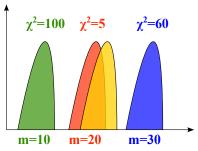


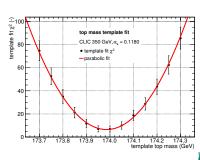


 σ_n^{meas} measured cross-section $\sigma_n^{template}$ simulated cross-section

 $\chi^{2} = \sum_{n}^{Nbins} \left(\frac{\sigma_{n}^{meas} - \sigma_{n}^{template}}{\Gamma_{n}^{meas}} \right)^{2}$

 Γ_n^{meas} measured cross-section uncertainty




 σ_n^{meas} measured cross-section $\sigma_n^{template}$ simulated cross-section

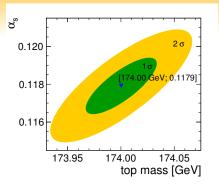
$$\chi^{2} = \sum_{n}^{Nbins} \left(\frac{\sigma_{n}^{meas} - \sigma_{n}^{template}}{\Gamma_{n}^{meas}} \right)^{2}$$

 Γ_n^{meas} measured cross-section uncertainty

in *n*-th energy bin

Repeat the fit $5000 \times$ with different measurement sets

⇒ statistical uncertainty

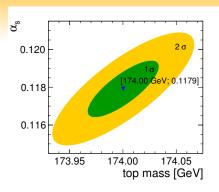

Top threshold scan results

Simulation input

- $m_t = 174.000 \text{ GeV}$
- $\alpha_s = 0.1180$

Simultaneous fit of m_t and α_s

- $m_t = 174.000 \pm 0.033 \text{ GeV}$
- $\alpha_s = 0.1179 \pm 0.0009$


Top threshold scan results

Simulation input

- $m_t = 174.000 \text{ GeV}$
- $\alpha_s = 0.1180$

Simultaneous fit of m_t and α_s

- $m_t = 174.000 \pm 0.033 \text{ GeV}$
- $\alpha_s = 0.1179 \pm 0.0009$

Further studies done:

- systematics induced by α_s and theory uncertainties
- influence caused by scan points position and number
- sensitivity to Top width, Yukawa coupling and Higgs mass

Systematics and beam effects

- Top threshold scan in feasible at the CLIC
- m_t statistical uncertainty for ILC is by 22% lower
- precise knowledge of the beam spectrum is more important than a narrow distribution
- ⇒ CLIC beam spectrum is good enough

Systematics and beam effects

- Top threshold scan in feasible at the CLIC
- m_t statistical uncertainty for ILC is by 22% lower
- precise knowledge of the beam spectrum is more important than a narrow distribution
- ⇒ CLIC beam spectrum is good enough

Systematic studies

• 10 meas. points \rightarrow 6 points (2D fit) \Rightarrow m_t stat. uncert. 39 MeV

Systematics and beam effects

- Top threshold scan in feasible at the CLIC
- m_t statistical uncertainty for ILC is by 22% lower
- precise knowledge of the beam spectrum is more important than a narrow distribution
- ⇒ CLIC beam spectrum is good enough

- 10 meas. points → 6 points (2D fit) ⇒ m_t stat. uncert. 39 MeV
- fixed α_s fit (1D) $\Rightarrow m_t$ stat. uncert. 21 MeV

Systematics and beam effects

- Top threshold scan in feasible at the CLIC
- m_t statistical uncertainty for ILC is by 22% lower
- precise knowledge of the beam spectrum is more important than a narrow distribution
- ⇒ CLIC beam spectrum is good enough

- 10 meas. points \rightarrow 6 points (2D fit) \Rightarrow m_t stat. uncert. 39 MeV
- fixed α_s fit (1D) $\Rightarrow m_t$ stat. uncert. 21 MeV
- α_s induced sys. uncert. < 30 MeV

Systematics and beam effects

- Top threshold scan in feasible at the CLIC
- m_t statistical uncertainty for ILC is by 22% lower
- precise knowledge of the beam spectrum is more important than a narrow distribution
- ⇒ CLIC beam spectrum is good enough

- 10 meas. points → 6 points (2D fit) ⇒ m_t stat. uncert. 39 MeV
- fixed α_s fit (1D) $\Rightarrow m_t$ stat. uncert. 21 MeV
- α_s induced sys. uncert. < 30 MeV
- $\sigma_{t\bar{t}}$ theoretical uncert. induced sys. uncert. ~ 10 MeV

Systematics and beam effects

- Top threshold scan in feasible at the CLIC
- m_t statistical uncertainty for ILC is by 22% lower
- precise knowledge of the beam spectrum is more important than a narrow distribution
- ⇒ CLIC beam spectrum is good enough

- 10 meas. points → 6 points (2D fit) ⇒ m_t stat. uncert. 39 MeV
- fixed α_s fit (1D) $\Rightarrow m_t$ stat. uncert. 21 MeV
- α_s induced sys. uncert. < 30 MeV
- $\sigma_{t\bar{t}}$ theoretical uncert. induced sys. uncert. ~ 10 MeV
- no measurable sensitivity to Top width, Yukawa coupling and Higgs mass

Summary

Future e^+e^- colliders:

- linear accelerators with \sqrt{s} of 500 to 3000 GeV (ILC, CLIC)
- equipped with highly precise tracking systems and highly granular calorimeters to reach excellent jet-energy resolution
- offer clean experimental environment for precise measurement of top quark mass

Summary

Future e^+e^- colliders:

- linear accelerators with \sqrt{s} of 500 to 3000 GeV (ILC, CLIC)
- equipped with highly precise tracking systems and highly granular calorimeters to reach excellent jet-energy resolution
- offer clean experimental environment for precise measurement of top quark mass

Top threshold scan:

- ullet pair production cross section measured around production threshold
- top quark mass can be extracted from that curve
- simulation for the CLIC has been completed
- \bullet Top quark mass and strong coupling constant α_s have been obtained with a help of the template fit technique
- statistical and systematical uncertainties acquired too

Thank you for your attention!

