Edoardo Mirabella

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

In collaboration with W. Hollik.

Outline

Motivations

- Closer look into (diagonal) squark pair production
 - State of the art
 - squark pair production at parton level
 - IR divergencies
- Numerical Analysis
- Conclusions

LHC ... "The" event of 2008

- \hookrightarrow Proton proton collider at 14 TeV.
- \hookrightarrow Multi purpose collider . . . Among the major goals SUSY searches

Squarks . . . why?

 \hookrightarrow SUSY partners of quarks.

 \hookrightarrow ... detectable (Same sign di-lepton signal, E_T , jet multiplicity)

EW corrections ... why?

 \hookrightarrow Formally higher order with respect to QCD corrections (already available) but . . .

- \hookrightarrow ... potentially important for distributions
 - $PP \rightarrow t\overline{t}$ in SM: EW contribution to p_T distribution from -5 to -15%

[Kühn *et al* '06]

● $PP \rightarrow W j$ in SM: EW corrections on p_T distribution amount up to 40%. [Kühn *et al* '07, Hollik *et al* '07]

Diagonal squark PP, status

 \hookrightarrow big positive corrections to the total cross section (from 5 to 90 %)

Diagonal squark PP, status

DPG Frühjahrstagung, Freiburg 03.03.08 – p.4/8

Diagonal squark PP, status

... And the generalization from the stop case is not trivial!

 $\begin{pmatrix} q = Q \end{pmatrix} \implies (\text{ tree level QCD (EW) with } \tilde{g}(\tilde{\chi}^0) \text{ in the T-channel }) \\ ((q, Q) \text{ SU(2) doublet }) \implies (\text{ tree level EW with } \tilde{\chi}^+ \text{ in the T- channel }) \end{pmatrix}$

Numerically Speaking: New interferences can be important (from $\mathcal{O}(\alpha_s \alpha)$ experience)

IR & Collinear Divergences

 $\ldots \rightsquigarrow$ IR & Collinear singularities to $q\overline{q} \rightarrow \tilde{Q}^a \tilde{Q}^{a*}$

... \rightsquigarrow IR & Collinear singularities to $q\overline{q} \rightarrow \tilde{Q}^a \tilde{Q}^{a*} \gamma$

 $\ldots \rightsquigarrow \mathsf{IR}$ & Collinear singularities to $q\overline{q} \to \tilde{Q}^a \tilde{Q}^{a*} g$

IR & Collinear Divergences

 $\dots \rightsquigarrow \mathsf{IR} \& \mathsf{Collinear} \text{ singularities to } q\overline{q} \to \tilde{Q}^a \tilde{Q}^{a*}$ $\dots \rightsquigarrow \mathsf{IR} \& \mathsf{Collinear} \text{ singularities to } q\overline{q} \to \tilde{Q}^a \tilde{Q}^{a*} \gamma$ $\dots \rightsquigarrow \mathsf{IR} \& \mathsf{Collinear} \text{ singularities to } q\overline{q} \to \tilde{Q}^a \tilde{Q}^{a*} g$

PDF factorization =

╋

╋

[KLN theorem] IR & Collinear Safe

IR & Collinear Divergences

Colour Algebra introducing color-charge operators in color space

cross check, $u\overline{u} \rightarrow \tilde{u}^a \tilde{u}^{a*}g$

 $\Delta = (\text{Dipole} - \text{Slicing}), \text{ point SPS1a'}$

General Informations

- ✓ The $\mathcal{O}(\alpha_s \alpha + \alpha^2)$ interference contributions have been included
 → their importance already known [Bornhauser *et al*]
- The photon induced process $g\gamma \rightarrow \tilde{Q}^a \tilde{Q}^{a*}$:

has been included

 \hookrightarrow in the stop case important [Hollik *et al*]

Dependence on the Chirality (Transverse Momentum distribution), $\delta = \frac{\mathcal{O}^{\text{NLO}} - \mathcal{O}^{\text{LO}}}{\mathcal{O}^{\text{NLO}}}$

• $g\gamma$ channel chirality-independent, the others more important in the \tilde{u}^L case

- $\mathcal{O}(\alpha_s^2 \alpha) \& \mathcal{O}(\alpha_s \alpha + \alpha^2)$ comparable (at least in the left handed case)
- $q\overline{q} \otimes \mathcal{O}(\alpha_s \alpha^2)$ have different sign in the low p_T region in the two cases $\hookrightarrow (d\overline{d} \to \tilde{u}^L \tilde{u}^{L*} > 0, d\overline{d} \to \tilde{u}^R \tilde{u}^{R*} = 0)$

Dependence on the Chirality (Transverse Mo

(Transverse Momentum distribution), $\delta = \frac{\mathcal{O}^{\text{NLO}} - \mathcal{O}^{\text{LO}}}{\mathcal{O}^{\text{NLO}}}$

 \tilde{u}^R , point SPS1a'

• $g\gamma$ channel chirality-independent, the others more important in the \tilde{u}^L case

- $\mathcal{O}(\alpha_s^2 \alpha) \& \mathcal{O}(\alpha_s \alpha + \alpha^2)$ comparable (at least in the left handed case)
- $q\overline{q} \otimes \mathcal{O}(\alpha_s \alpha^2)$ have different sign in the low p_T region in the two cases $\hookrightarrow (d\overline{d} \to \tilde{u}^L \tilde{u}^{L*} > 0, d\overline{d} \to \tilde{u}^R \tilde{u}^{R*} = 0)$
- % contributions of NLO EW corrections are important in the left handed case.

Dependence on the Flavour (Total Cross Section Vs squark mass), $\left| \delta = \frac{\mathcal{O}^{\text{NLO}} - \mathcal{O}^{\text{LO}}}{\mathcal{O}^{\text{NLO}}} \right|$

NLO EW corrections differ in the two cases $\begin{cases} \tilde{u} : & \text{Negative, enhanced if } m_{\tilde{u}} & \text{big} \\ \tilde{c} : & \text{Positive, below } 10 \% \end{cases}$

- The leading channels are different in the two cases (PDF suppression for \tilde{c})
- \tilde{u} case: $q\overline{q}$ @ $\mathcal{O}(\alpha_s^2 \alpha)$ leading at high $m_{\tilde{u},L}$ values
 - \hookrightarrow Sudakov enhancement + enhancement of $q\overline{q}$ channel @ LO.
 - $\hookrightarrow q\overline{q}$ channel @ $\mathcal{O}(\alpha_s \alpha + \alpha^2)$ suppressed at high $m_{\tilde{u},L}$ values

Dependence on the Benchmark Point (Invariar

(Invariant Mass distribution for \tilde{u}^L prod.)

The size of the contributions decrease as the squark mass increases

• Corrections dominated by
$$\begin{cases} gg, g\gamma \\ q \overline{q} \end{cases}$$
 channels in the $\begin{cases} low \\ high \end{cases} M_{inv}$ region

Dependence on the Benchmark Point (Invariant Mass distribution for \tilde{u}^L prod.)

point SU1, $m_{\tilde{u},L} = 766 \text{ GeV}$

point SU4, $m_{\tilde{u},L} = 420 \text{ GeV}$

The size of the contributions decrease as the squark mass increases

• Corrections dominated by
$$\begin{cases} gg, g\gamma \\ q \overline{q} \end{cases}$$
 channels in the $\begin{cases} low \\ high \end{cases}$ M_{inv} region

INLO EW corrections are sizable, their importance increase as the squark mass increases

Conclusions & Outlook

- (diagonal) squark-antisquark pair production is an important process in the hunting for SUSY
- $\mathcal{O}(\alpha_s^2 \alpha)$ corrections to this process are available for arbitrary squark-antisquark pair
- They strongly depend on flavour, chirality and mass of the final states
- They can give rise to sizable corrections not only to the distributions but also to the total cross section.

road map:

- Compute the $O(\alpha_s^2 \alpha)$ corrections to other processes of production of SUSY colored particle:
 - \blacksquare gluino pair production \rightarrow completed
 - s associated production of a squark and a gluino \rightarrow w.i.p.
 - (non diagonal) squark pair production \rightarrow on the wish list
- Link these corrections to PROSPINO