Precise predictions for $h^0 \rightarrow WW^*/ZZ^* \rightarrow 4f$

•

Jianhui Zhang Max-Planck-Institut für Physik, München

In collaboration with Wolfgang Hollik

Outline

•

Introduction

Strategy of the calculation

- Numerical results
- Summary

Introduction

Higgs sector of MSSM

- 5 physical Higgs bosons, h^0, H^0, A^0 and $H^{\pm}_{\underline{O}}$ $M_{h^0} \leq 135 \text{GeV}$
- Discovery potential of h^0 decay channel to $b\bar{b}$ difficult in mass range below 140GeV BR $(h^0 \rightarrow VV^*)$ grows with M_{A^0} in the limit $M_{A^0} \gg M_Z$, h^0 SM-like
- Precise knowledge of the channel helps distinguish Higgs boson of different origin indirect bounds on e.g. M_{A^0} information for distinguishing soft
 - SUSY-breaking scenarios

DPG Frühjahrstagung 3-7 March 2008 – p.3/10

Introduction

Current results

۲

for SM Higgs $H \rightarrow VV$, $\mathcal{O}(\alpha)$ corrections for on-/off- shell gauge bosons (Grau et al '90, Kniehl '91) $H \rightarrow 4f$, $\mathcal{O}(\alpha)$ EW corrections available for leptonic final state (A. Bredenstein, A. Denner, S. Dittmaier and M. M. Weber '06) also $\mathcal{O}(\alpha_s)$ QCD corrections for semileptonic/hadronic final states (A. Bredenstein, A. Denner, S. Dittmaier and M. M. Weber '06)

interesting to compare the results for SM/MSSM Higgs boson

for MSSM $h^0 \rightarrow VV^*$, improved tree-level results(Higgs mixing) available in FeynHiggs

In this work, as the first step, the $\mathcal{O}(\alpha)$ EW corrections to decay of h^0 to four leptons are computed

Strategy

In contrast to SM case

beyond lowest order mixing between Higgs bosons Vertex correction to H⁰VV due to fermion/sfermion loop

implementation of width

 M_{h^0} below threshold, one gauge boson can be resonant

complex mass scheme implemented in SM, problem in MSSM

pole scheme not applicable near and below threshold region

factorization scheme

$$\mathcal{M}_{\text{born}} = \frac{k_V^2 - M_V^2}{k_V^2 - M_V^2 + iM_V\Gamma_V} \mathcal{M}_{\text{born}}(\Gamma_V = 0)$$

at tree level, double-counting from self-energy insertions avoided at loop level

Strategy

۲

virtual photonic corrections
on-shell singularities occur in photonic diagrams,
e.g. pentagon diagrams,

 $\ln(k_V^2 - M_V^2) \rightarrow \ln(k_V^2 - M_V^2 + iM_V\Gamma_V)$

only scalar integrals contribute, replacement does not disturb gauge invariance

analytical evaluation of soft/on-shell singular integrals

- charged resonance IR/on-shell singular contributions extracted+Real →QED-like correction
- neutral resonance photonic diagrams gauge invariant
- real photon emission phase space slicing/dipole subtraction

analytical check of cancellation of soft singularities

Numerical results

QED-like correction to partial decay width of

 $h^0 \to e^- \bar{\nu}_e \mu^+ \nu_\mu$

۲

comparison of phase space slicing and subtraction

for m_h^{max} scenario, $\tan \beta = 30, M_{A^0} = 400 \text{GeV}$ agreement between two approaches

Numerical results

۲

partial decay width of $h^0 \rightarrow e^- \bar{\nu}_e \mu^+ \nu_\mu$

approach the value for SM Higgs of same mass for large M_{A^0} ,

for m_{h}^{max} scenario with $\tan \beta = 30$, difference $\sim 5\%$

Numerical results

invariant mass distribution of $h^0 \rightarrow e^- \bar{\nu}_e \mu^+ \nu_\mu$

for $m_h^{m\,ax}$ scenario, with $an eta = 30, M_{A^0} = 120/400 {\rm GeV}$

enhancement where the other gauge boson is resonant mixing between Higgs bosons leads to negative corrections for the left, negligible for the right

Summary

- radiative corrections for $h^0 \rightarrow 4f$ needed for various reasons
- new features of MSSM Higgs bosons relevant
- RC can give rise to sizeable relative corrections
- to be finished; include light quarks in final state