Suche nach geladenen Higgs-Bosonen mit dem ATLAS-Detektor $\mathsf{t}\bar{\mathsf{t}} \to (\tau[\mathsf{had}]\nu\mathsf{b})(\mathsf{I}\nu\mathsf{b})$

<u>Thies Ehrich</u>, Siegfried Bethke, Sandra Horvat, Oliver Kortner, Hubert Kroha und Susanne Mohrdieck-Möck

> Max-Planck-Institut für Physik (Werner Heisenberg Institut) München

DPG-Frühjahrstagung 07. März 2008

Überblick

- Geladene Higgs Bosonen Grundlagen
- Suche nach leichten Higgs-Bosonen
- Optimierung der Schnitte
- Ergebnisse und Ausblick

Geladene Higgs-Bosonen

- geladene Higgs-Bosonen treten z.B. auf in:
 - Modellen mit >1 Higgs Doublets (THDM)
 - Modellen mit Higgs-Tripletts
 - einigen little-Higgs Modellen
- nach EW Symmetriebrechung in THDM 5 Higgs-Bosonen:
 - h⁰,H⁰: CP gerade
 - A⁰: CP ungerade
 - H[±]: geladen
- das prominenteste Modell mit geladenen Higgs-Bosonen ist MSSM (Minimal Supersymmetric Standard Model)
- auf tree-level vollständig festgelegt durch:
 - m_A
 - $tan\beta = v_1/v_2$ (v: Vakuumerwartungswert des Higgs-Feldes)
- Produktions- und Zerfallsprozesse:
 - für m_{H^+} < $m_{top}-m_b$: $t{\rightarrow}H^+b$, $H^+ \rightarrow \tau \nu$
 - für $m_{H^+} > m_{top} m_b$: $gb \rightarrow H^+t$, $H^+ \rightarrow tb$

CDF Limits und Zerfallsverhältnis

- $t\bar{t} \rightarrow (Wb)(Wb)$ -Wirkungsquerschnitt bei LHC $\sigma_{tt} = 833 \pm 100 \mathrm{pb}$ (Standardmodell)
- ullet Leichte geladene Higgs-Bosonen zerfallen fast immer in au-Jets

Signal und Untergrund

- Diese Studie konzentriert sich auf leichte Higgs-Bosonen
- Wegen Neutrinos in beiden top Zerfällen:
 - kann das W-Boson rekonstruiert werden
 - kann das Top-Quark nicht rekonstruiert werden
 - hilft transversale Higgs-Masse nicht, Signal vom Untergrund zu trennen.
- Das Signal kann lediglich als ein Überschuss an τ -Jets in $t\bar{t}$ -Zerfällen beobachtet werden.

Benutzte Datensätze

- alle Daten stammen aus der aktuellen offiziellen ATLAS Monte-Carlo Produktion
- es wurde ausschliesslich die volle Detektorsimulation (Athena 12.0.6) verwendet
- verwendete Generatoren:

- Signals: Pythia - $t\bar{t}$: MC@NLO

W+Jets : Alpgen+HerwigSingle Top: AcerMC

Signal	90 GeV	110 GeV	120 GeV	130 GeV	150 GeV
Lumi [pb ⁻¹]	822	1161	1410	1917	4317
	$t ar t \ge 1 \ell$	single top (Wt)	single top (s)	single top (t)	
Lumi [pb ⁻¹]	965	524	2786	231	
$W \rightarrow e \nu + Jets$	+2 partons	+3 partons	+4 partons	+5 partons	
Lumi [pb ⁻¹]	531	484	464	144	
$W \rightarrow \mu \nu + Jets$	+2 partons	+3 partons	+4 partons	+5 partons	
Lumi [pb ⁻¹]	253	168	467	151	
$W \rightarrow \tau \nu + Jets$	+2 partons	+3 partons	+4 partons	+5 partons]
Lumi [pb ⁻¹]	198	130	171	240	

Schnitte

- Trigger:
 - isoliertes Elektron $+ E_T^{miss}$
 - isoliertes Myon + E_T^{miss}
 - isolierter au-Jet+ $\mathsf{E}_\mathsf{T}^\mathsf{miss}$ + 3 Jets
- $N_{e,\mu} \ge 1$
- $N_{jets}(=N_{light jets}+N_{b jets}+N_{\tau jets}) \ge 3$
- $N_{\tau \text{ iet}} \geq 1$
- $N_{b jet} \geq 1$
- $p_T^{\tau} > 40 \text{ GeV}$
- $q_{\tau} + q_{\ell} = 0$ (Ladung τ jet \neq lepton)
- $\bullet \ \mathsf{E}_{\mathsf{T}}^{\mathsf{miss}} > 180 \ \mathsf{GeV}$

τ -Jet performance

- ullet Erinnerung: man möchte einen Überschuss an au-Jets zählen
- ullet hervorragende au-Jet Identifikation ist notwendig
- ullet Jets und au-Jets werden durch einen log. Likelihood (LLH) separiert

- Quark-Jets werden effizient unterdrückt
- dennoch recht hohe Fehlrekonstruktions-Rate im $t\bar{t}$ -Untergrund (Schnitt bei LLH>6: \sim 50%) \rightarrow zusätzliche Hintergrund Ereignisse
- dies ist zu gleichen Teilen verschuldet durch die hohe Jet Multiplizität im tt -Hintergrund und Elektronen

p_T^{τ} und E_T^{miss}

- generell nur sehr geringe Unterschiede zwischen tt und Signalverteilungen
- ullet Energie der au-Zerfallsprodukte hängt von den Massen der H^+/W -Bosonen ab

Schnittoptimierung - 1

• Die Schnitte wurden auf eine hohe Signifikanz optimiert

$$S = \frac{(\mathsf{N}_{\mathsf{Sig}} + \mathsf{N}_{\mathsf{t\bar{t}}\;(\mathsf{MSSM})}) - \mathsf{N}_{\mathsf{t\bar{t}}\;(\mathsf{SM})}}{\sqrt{\mathsf{N}_{\mathsf{t\bar{t}}\;(\mathsf{SM})} + (\Delta_{\mathsf{sys}} \cdot \mathsf{N}_{\mathsf{t\bar{t}}\;(\mathsf{SM})})^2}}$$

• Dabei wurde ein systematischer Fehler $\Delta_{\rm sys} = 10\%$ angenommen

• Als Schnitt wurde ein LLH-Wert>6 gewählt

Schnittoptimierung - 2

- als Diskriminierungs-Variablen wurden jetzt E_T^{miss} und p_T^{τ} gewählt
- die Signifikanz verbessert sich für grosses E_T^{miss}
- Bemerkung: Signifikanzen für sehr hohe Schnitt-Werte nicht korrekt, da Gauss-Statistik zur Signifikanz-Berechnung benutzt wurde.

 \bullet Als Schnitt wurde ${\rm E_T^{miss}} > 180~{\rm GeV}$ und ${\rm p_T^\tau} > 40~{\rm GeV}$ gewählt

Fehlende Energie

- ullet Nach allen Schnitten erkennt man für kleine Massen den Überschuss an Events mit großer fehlender Energie (hier normiert auf 10 fb $^{-1}$)
- Für große Massen ist dieser viel geringer
- Herausforderung: Abschätzung des tt -Backgrounds aus Daten

Fehlende Energie (Signal+Untergrund) nach allen Schnitten

Entdeckungspotential für 1 fb $^{-1}$

Zusammenfassung und Ausblick

- Geladene Higgs-Bosonen können in diesem Kanal über einen weiten tanβ-Bereich nachgewiesen werden
- \bullet Als grösste Herausforderung bleibt die Abschätzung des $t\bar{t}$ -Untergrunds aus Daten
- Um eine verlässlichere Statistik zu erhalten, muss die Studie mit der schnellen Simulation wiederholt werden.
- Untersuchung von Pile-Up Effekten auf die Analyse