Suche nach geladenen Higgs-Bosonen mit dem ATLAS-Detektor $t\bar{t} \rightarrow (\tau [had]\nu b)(I\nu b)$

<u>Thies Ehrich</u>, Siegfried Bethke, Sandra Horvat, Oliver Kortner, Hubert Kroha und Susanne Mohrdieck-Möck

> Max-Planck-Institut für Physik (Werner Heisenberg Institut) München

DPG-Frühjahrstagung 07. März 2008

GEFÉRIDERT VON

Sundesministeriu ür Bildung ind Forschung

- Geladene Higgs Bosonen Grundlagen
- Suche nach leichten Higgs-Bosonen
- Optimierung der Schnitte
- Ergebnisse und Ausblick

Geladene Higgs-Bosonen

- geladene Higgs-Bosonen treten z.B. auf in:
 - Modellen mit >1 Higgs Doublets (THDM)
 - Modellen mit Higgs-Tripletts
 - einigen little-Higgs Modellen
- nach EW Symmetriebrechung in THDM 5 Higgs-Bosonen:
 - h⁰,H⁰: CP gerade
 - A⁰: CP ungerade
 - H^{\pm} : geladen
- das prominenteste Modell mit geladenen Higgs-Bosonen ist MSSM (Minimal Supersymmetric Standard Model)
- auf tree-level vollständig festgelegt durch:
 - m_A
 - tan β =v $_1$ /v $_2$ (v: Vakuumerwartungswert des Higgs-Feldes)
- Produktions- und Zerfallsprozesse:
 - für $m_{H^+} <\!\! m_{top} m_b\!\!: t \!\!\rightarrow\! H^+ b, \ \! H^+ \rightarrow \tau \nu$
 - für $m_{H^+} > \!\! m_{top} \! \!\! m_b \!\! : gb \! \rightarrow \! H^+ t, \ H^+ \rightarrow \! tb$

CDF Limits und Zerfallsverhältnis

- $t\bar{t} \rightarrow (Wb)(Wb)$ -Wirkungsquerschnitt bei LHC $\sigma_{tt} = 833 \pm 100$ pb (Standardmodell)
- Leichte geladene Higgs-Bosonen zerfallen fast immer in τ -Jets

Signal und Untergrund

- Diese Studie konzentriert sich auf leichte Higgs-Bosonen
- Wegen Neutrinos in beiden top Zerfällen:
 - kann das W-Boson rekonstruiert werden
 - kann das Top-Quark nicht rekonstruiert werden
 - hilft transversale Higgs-Masse nicht, Signal vom Untergrund zu trennen.
- Das Signal kann lediglich als ein Überschuss an τ-Jets in tt
 -Zerfällen beobachtet werden.

Benutzte Datensätze

- alle Daten stammen aus der aktuellen offiziellen ATLAS Monte-Carlo Produktion
- es wurde ausschliesslich die volle Detektorsimulation (Athena 12.0.6) verwendet
- verwendete Generatoren:
 - Signals: Pythia
 - $t\bar{t}$: MC@NLO
 - W+Jets : Alpgen+Herwig
 - Single Top: AcerMC

Signal	90 GeV	110 GeV	120 GeV	130 GeV	150 GeV
Lumi [pb ⁻¹]	822	1161	1410	1917	4317
	$t\bar{t} \ge 1\ell$	single top (Wt)	single top (s)	single top (t)	
Lumi [pb ⁻¹]	965	524	2786	231	
$W \rightarrow e\nu + Jets$	+2 partons	+3 partons	+4 partons	+5 partons	
Lumi [pb ⁻¹]	531	484	464	144	
$W \rightarrow \mu \nu + Jets$	+2 partons	+3 partons	+4 partons	+5 partons	
Lumi [pb ⁻¹]	253	168	467	151	
$W \rightarrow \tau \nu + Jets$	+2 partons	+3 partons	+4 partons	+5 partons	
Lumi [pb ⁻¹]	198	130	171	240	

• Trigger:

- isoliertes Elektron + E_T^{miss}
- isoliertes Myon + E_T^{miss}
- isolierter au-Jet+ E_T^{miss} + 3 Jets
- $N_{e,\mu} \ge 1$
- $N_{jets}(=N_{light jets}+N_{b jets}+N_{\tau jets}) \geq 3$
- $N_{\tau jet} \geq 1$
- $N_{b jet} \ge 1$
- $\mathbf{p}_{\mathrm{T}}^{\tau} > 40 \ \mathrm{GeV}$
- $q_{\tau}+q_{\ell}=0$ (Ladung τ jet \neq lepton)
- $\bullet ~~{\sf E}_{\sf T}^{\sf miss} > 180~{\sf GeV}$

Schnitte

$\tau\text{-}\mathsf{Jet}$ performance

- Erinnerung: man möchte einen Überschuss an τ -Jets zählen
- hervorragende τ -Jet Identifikation ist notwendig
- Jets und *τ*-Jets werden durch einen log. Likelihood (LLH) separiert

- Quark-Jets werden effizient unterdrückt
- dennoch recht hohe Fehlrekonstruktions-Rate im tt
 -Untergrund (Schnitt bei LLH>6: ~50%)→zusätzliche Hintergrund Ereignisse
- dies ist zu gleichen Teilen verschuldet durch die hohe Jet Multiplizität im tt -Hintergrund und Elektronen

- \bullet generell nur sehr geringe Unterschiede zwischen $t\bar{t}$ und Signalverteilungen
- Energie der τ -Zerfallsprodukte hängt von den Massen der H⁺/W-Bosonen ab

Schnittoptimierung - 1

• Die Schnitte wurden auf eine hohe Signifikanz optimiert

$$S = \frac{(\mathsf{N}_{\mathsf{Sig}} + \mathsf{N}_{\mathsf{t}\bar{\mathsf{t}}} (\mathsf{MSSM})) - \mathsf{N}_{\mathsf{t}\bar{\mathsf{t}}} (\mathsf{SM})}{\sqrt{\mathsf{N}_{\mathsf{t}\bar{\mathsf{t}}} (\mathsf{SM}) + (\Delta_{\mathsf{sys}} \cdot \mathsf{N}_{\mathsf{t}\bar{\mathsf{t}}} (\mathsf{SM}))^2}}$$

• Dabei wurde ein systematischer Fehler $\Delta_{\rm sys}=10\%$ angenommen

• Als Schnitt wurde ein LLH-Wert>6 gewählt

- \bullet als Diskriminierungs-Variablen wurden jetzt E_{T}^{miss} und p_{T}^{τ} gewählt
- \bullet die Signifikanz verbessert sich für grosses $\mathsf{E}_{\mathsf{T}}^{\mathsf{miss}}$
- Bemerkung: Signifikanzen für sehr hohe Schnitt-Werte nicht korrekt, da Gauss-Statistik zur Signifikanz-Berechnung benutzt wurde.

• Als Schnitt wurde ${\rm E}_{\rm T}^{\rm miss}>180~{\rm GeV}$ und ${\rm p}_{\rm T}^{\tau}>40~{\rm GeV}$ gewählt

Fehlende Energie

- Nach allen Schnitten erkennt man f
 ür kleine Massen den Überschuss an Events mit großer fehlender Energie (hier normiert auf 10 fb⁻¹)
- Für große Massen ist dieser viel geringer
- Herausforderung: Abschätzung des tt -Backgrounds aus Daten

 $tan\beta=20$

Fehlende Energie (Signal+Untergrund) nach allen Schnitten

Entdeckungspotential für 1 fb $^{-1}$

- Geladene Higgs-Bosonen können in diesem Kanal über einen weiten tanβ-Bereich nachgewiesen werden
- Als grösste Herausforderung bleibt die Abschätzung des tt -Untergrunds aus Daten
- Um eine verlässlichere Statistik zu erhalten, muss die Studie mit der schnellen Simulation wiederholt werden.
- Untersuchung von Pile-Up Effekten auf die Analyse