Problem	Solution	Results
00000	000	00000

Improvement of the CRESST Phonon/Light Detectors

Michael Kiefer

Max-Planck-Institut für Physik, München

Freiburg, 03/03/2007

Results 00000

Direct Dark Matter Search

CRESST

- Search for WIMPs
- Cryogenic experiment
- 2 Readout channels:
 - Phonons: Energy measurement Light: Particle Identification

Problem	Solution	Results
D●000	000	00000
Background suppression		

Signal

• (Background) \gg (expected WIMP-Signal)

Michael Kiefer (MPI für Physik, München) Improvement of the CRESST Detectors

Problem
00000

Results 00000

Band separation

1= 9QC

Results 00000

Band separation

三日 のへの

Ρ	ro	b	le	m
0	0		20	С

Band separation

1= 9QC

Results 00000

Band separation

Consequence:

Additional light significantly lowers discrimination threshold

Michael Kiefer (MPI für Physik, München) Improvement of the CRESST Detectors

Consequence:

Lower discrimination threshold raises expected WIMP count rate

Michael Kiefer (MPI für Physik, München) Improvement of the CRESST Detectors

Problem 00000

Solution

Results 00000

Problem During Detector Production

Steps

• Scintillating crystal

Problem During Detector Production

Steps

- Scintillating crystal
- Evaporation

1= 9QC

Results 00000

Problem During Detector Production

Steps

- Scintillating crystal
- Evaporation
- Structuring

Problem During Detector Production

Steps

- Scintillating crystal
- Evaporation
- Structuring

Problem

- High temperatures needed for evaporation
- Change in chemical composition
- Degradation of light output by factor of 2

Idea for the Solution

Glue a small thermometer carrier

э.

ヨニ のへで

Idea for the Solution

Glue a small thermometer carrier onto a big absorber

- Improves the light output
- Mass production of detectors

Idea for the Solution

Glue a small thermometer carrier onto a big absorber

- Improves the light output
- Mass production of detectors

My work: Investigate in gluing technique

- Is it technically possible?
- Is the light gain worth a phonon performance loss?

Results 00000

Proof-of-Principle Experiment Set-Up

Produce phonon detector

三日 のへの

Results 00000

Proof-of-Principle Experiment Set-Up

Steps

- Produce phonon detector
- Cut crystal

Results 00000

Proof-of-Principle Experiment Set-Up

Results 00000

Proof-of-Principle Experiment Set-Up

Steps

- Produce phonon detector
- Cut crystal
- Glue crystal

Results 00000

Proof-of-Principle Experiment Set-Up

Steps

- Produce phonon detector
- Cut crystal
- Glue crystal

Results 00000

Proof-of-Principle Experiment Set-Up

Steps

- Produce phonon detector
- Cut crystal
- Glue crystal
- Measure pulses of known energy

$60 \, \mathrm{keV}\text{-}\mathsf{Pulses}$

315

Analysis of Pulses

Problem	Solution	Results
DOOOO	000	00●00
Theory of Pulse Formation		

Mathematical model

Differential equ	atio	ns for phonc	on tra	ansport		
Temp. /Phon. balance $\frac{\mathrm{d}}{\mathrm{d}t}\Delta T(t)C$ $\frac{\mathrm{d}}{\mathrm{d}t}N_1(t)$	=	to Thermometer $\mathcal{E}A_f \frac{N_1(t)}{V_1}$ $-A_f \frac{N_1(t)}{V_1}$	_	heat bath $G_b \Delta T(t)$	glue transm.	glue abs.
	_				▲日 > ▲間 > ▲目 > ▲目 >	≣া≊ •୨৭৫

Michael Kiefer (MPI für Physik, München) Improvement of the CRESST Detectors

Problem	

Results 00●00

Theory of Pulse Formation

Mathematical model (extended)

Differential equa	atior	ns for phono	n tra	ansport				
Temp. /Phon. balance $rac{\mathrm{d}}{\mathrm{d}t}\Delta T(t) \mathcal{C}$	=	to Thermometer $\mathcal{E}A_f rac{N_1(t)}{V_1}$	_	heat bath $G_b \Delta T(t)$		glue transm.		glue abs.
$\frac{\mathrm{d}}{\mathrm{d}t}N_1(t)$	=	$-A_f \frac{N_1(t)}{V_1}$			-	$A_g\left(rac{N_1(t)}{V_1}-rac{N_2(t)}{V_2} ight)$	-	$A_a \frac{N_1(t)}{V_1}$
$\frac{\mathrm{d}}{\mathrm{d}t}N_2(t)$	=				+	$A_g\left(\frac{N_1(t)}{V_1}-\frac{N_2(t)}{V_2}\right)$	-	$A_a \frac{N_2(t)}{V_2}$
	_		_		_			

roblem	
0000	

Results 00●00

Theory of Pulse Formation

Mathematical model (extended) \rightarrow Solution

$$\Delta T(t) = \alpha_2 \left[e^{-\frac{G_b}{C}t} - \left(\frac{\gamma_2}{\phi} \sinh(\phi t) + \cosh(\phi t) \right) e^{-\beta t} \right]$$

where

$$\begin{array}{lcl} \phi & = & \displaystyle \frac{\sqrt{\left(\left[A_{f} + A_{a} + A_{g} \right] V_{2} - \left[A_{a} + A_{g} \right] V_{1} \right)^{2} + 4A_{g}^{2} V_{1} V_{2}}}{2V_{1}V_{2}} \\ \alpha_{2} & = & \displaystyle \frac{A_{f} EA_{g} C}{\left(G_{b}^{2} V_{1} - \left[A_{f} + A_{a} + A_{g} \right] G_{b} C \right) V_{2} + \left(A_{a} + A_{g} \right) \left(\left[A_{f} + A_{a} \right] - G_{b} C V_{1} \right) + A_{a} A_{g}} \\ \beta & = & \displaystyle \frac{\left(A_{f} + A_{a} + A_{g} \right) V_{2} + \left(A_{a} + A_{g} \right) V_{1}}{2V_{1} V_{2}} \\ \gamma_{2} & = & \beta - 2 \frac{G_{b}}{C} V_{1} \end{array}$$

Differential equations for phonon transport

Temp. /Phon. balance $rac{\mathrm{d}}{\mathrm{d}t}\Delta \mathcal{T}(t) \mathcal{C}$	=	to Thermometer $\mathcal{E}A_f rac{N_1(t)}{V_1}$	_	heat bath $G_b \Delta T(t)$		glue transm.		glue abs.
$\frac{\mathrm{d}}{\mathrm{d}t}N_1(t)$	=	$-A_f \frac{N_1(t)}{V_1}$			-	$A_g\left(\frac{N_1(t)}{V_1}-\frac{N_2(t)}{V_2}\right)$	-	$A_a \frac{N_1(t)}{V_1}$
$\frac{\mathrm{d}}{\mathrm{d}t}N_2(t)$	=				+	$A_g\left(\frac{N_1(t)}{V_1}-\frac{N_2(t)}{V_2}\right)$	-	$A_a \frac{N_2(t)}{V_2}$

Problem	Solution	Results
00000	000	00●00
Theory of Pulse Formation		

Mathematical model (extended) \rightarrow Solution \rightarrow Information about glue

Transit	ion properties
$A_f =$	$(5.5772\pm0.0093)\cdot10^{-3}{\rm m}^3~{\rm s}^{-1}$
$A_a =$	$(0.82 \pm 0.34) \cdot 10^{-4} \mathrm{m^3 \ s^{-1}}$
$A_g =$	$(1.797 \pm 0.090) \cdot 10^{-4} \mathrm{m^3 \ s^{-1}}$

Problem	Solution	Results
00000	000	000●0
Conclusion		

Observations

- Pulses are distinguishable by shape
- Signal loss in phonon channel pprox 50%
- Separation threshold improved by a factor 2
- Overall performance gain
- Model allows prediction of behaviour in different geometry

Future: Prototype detector with Gran Sasso dimensions

- Detector is being built right now
- Fake signals by stress relaxation?
- Should be included in next run

Evidence for Dark Matter

Rotation curves of galaxies

Theory vs. Measurement

Evidence for Dark Matter

Rotation curves of galaxies

 \Rightarrow Dark Matter

Theory vs. Measurement

Evidence for Dark Matter 2

Structures in the Bullet cluster

$\Rightarrow \mathsf{Dark}\ \mathsf{Matter}$

Cosmic Microwave Background

Current Exclusion Limits

Data of one CRESST Detector Module

Dark Matter Experiments

三日 のへの

→ < ∃ →</p>

< 1 k