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What is the DSNB and why would we be

interested in it?

◮ Core-collapse Supernovae (SNe) are the most luminous Neutrino sources of the
universe (3 × 1053erg)

◮ Only a handful neutrinos observed from one SN until now (SN1987A)

◮ Today‘s detector technology would measure
thousands of events but galactic SNe are rare statistical events

◮ Look for the convolved flux of all past SNe instead - The DSNB

◮ What could we learn?

◮ About SN physics in general
◮ About the SN history ⇒ star formation history
◮ About neutrino properties

◮ DSNB Flux:
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Individual SN neutrino spectrum

◮ Delayed explosion mechanism: neutron star binding energy Eb ≈ 3 × 1053erg

released in ν

◮ Different simulations: Garching group, Lawrence Livermore, Thompson Burrows
& Pinto and others

◮ Example [Keil,Raffelt,Janka astro-ph/0303226]:

◮ Roughly thermal spectra can be fitted to an analytic distribution (a-fit):
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◮ pinching factor a describes deviation from Maxwell-Boltzmann distribution
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Individual SN neutrino spectrum
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◮ Only interested in ν̄e easiest to detect (water cherenkov detectors, inverse beta
decay)

◮ Oscillations [Lunardini,Smirnov hep-ph/0302033] can be neglected: Differences between
simulations larger than difference between (ν̄µ, ν̄τ ) and ν̄e spectra

◮ Uncertainties in Eb due to uncertainties in neutron star masses and equation of
state

◮ SN1987A analyses [Yuksel,Beacom07], [Loredo, Lamb astro-ph/0107260]:
(Etot,νe = 84 × 1051erg); (< Eνe >= 9 ± 1.5MeV)

◮ These references and the simulations can be summarized:
◮ Etot,ν̄e

= 50+50
−20 × 1051 erg

◮ Eνe = 17+5
−8 MeV

◮ aνe = 3.1 ± 1.2
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The supernova rate

◮ Direct measurements of RSN, both locally [Cappellaro&al01] and up to
z ≈ 1 [Dahlen&al04]. Problem: Low statistics, dust extinction

◮ Indirect observation by using the star formation rate (SFR) ψ∗(z):

RSN ∝ ψ∗

◮ UV-light: Young stars produce UV-light; dust extinction!
◮ Emission-lines: Massive, early-type stars emit Hα line; dust

extinction
◮ Far infrared: Dust absorbs UV-light and reemits it in the Far

infrared
◮ Radio: Synchrotron radiation from CC SN; no dust extinction
◮ X-ray: X-ray binaries; indirect
◮ many more...

◮ Uncertainties in the conversion factor between SN rate and SFR
due to uncertain critical mass (7 − 10M⊙)
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The supernova rate

[Hopkins,Beacom astro-ph/0601463]

◮ Parameterize RSN as follows:

◮ RSN = R0
SN

(1 + z)β for z < 1
◮ RSN = 2(β−α)(1 + z)α for z > 1

◮ β = 2.5 ± 1.5 [Hogg 01], [Hopkins,Beacom06]

◮ α = 0 ± 2 (large scatter in opinions)

◮ R0
SN

= 0.7+1.9
−0.3 × 10−4 yr−1 Mpc−3 (dust extinction)
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Detectors

◮ detection cross section ν̄ep → ne+ scales ∝ E 2
ν

◮ Water cherenkov detectors: SKs limit on the DSNB:
< 1.2ν̄ecm

−2s−1 and less than 3 events/yr above 19.3MeV

[Malek&al03] (< 30ν̄ecm
−2s−1 total, our baseline: 8+22

−5 ν̄ecm
−2s−1,

0.33 events/yr at SK from 18–40 MeV)

◮ Gadolinium Trichloride GdCl3 detection proposed; Coincidence
measurement with neutron [Beacom&Vagins03]

◮ New megaton-class detectors: Hyper-K; UNO with fiducial volume
of 1150Mt and 445 kt (respectively) proposed. 170 events in 5
years in (8–40) MeV (baseline case, UNO)

◮ Large liquid scintillation detectors like Low Energy Neutrino
Astronomy (LENA) detector would use coincidence measurements;
≈ 10 events per year for (10–25 MeV) [Wurm&al’07]
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Backgrounds

◮ Reactor ν̄e : At the SK site negligible at E > 12MeV

◮ Atmospheric ν̄e : Important from about 30MeV

◮ Spallation: Cosmic Ray Muons split O-atoms, daughter
products decay via beta-dacay, mimic a ν̄e-event.
Reduceable, but not to arbitrarily low energies. Current
SK-limit: 19.3MeV

◮ Sub-Cherenkov-muons: Muons from atmospheric
neutrinos with a kinetic energy smaller than 50MeV , do
not emit Cerenkov-light and cannot be detected, but
decay into electrons ⇒ background to the DSNB.

◮ Spallation and sub-Cherenkov-muons can be further
reduced by coincidence measurement (liquid scintillator,
Gadolinium technique)
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Backgrounds

Current situation
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Backgrounds

Possible future situation
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What can we realistically learn?
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◮ In absence of galactic SN: Future SFR observations might constrain
β ≈ 2 − 3 ⇒ ESN constrained to ±2 MeV (5 yrs, megaton) ⇒

Important probe for SN simulations
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What can we realistically learn?

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  10  20  30  40  50

N
e’

 [
(2

2
.5

 k
t)

 y
r 

M
eV

]-1

E [MeV]

Etot
SN

xRSN
0
=  30x0.4

Etot
SN

xRSN
0
=  50x0.7

Etot
SN

xRSN
0
=80x1.8

Reactor νe

Atm. ν-e+νe

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  10  20  30  40  50

N
e’

 [
(2

2
.5

 k
t)

 y
r 

M
eV

]-1

E [MeV]

β=1.0
β=2.5
β=4.0

Reactor νe
Atm. ν-e+νe

◮ Case of a Galactic SN: very accurate knowledge (1–5%) of ESN
tot ;

SFR measurements might determine β to 25% ⇒ Determine R0
SN

to 25% from the DSNB (5 years megaton detector performance).

◮ Only measurement placing an upper bound on R0
SN

, not affected by
dust extinction.
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Summary

◮ What can the DSNB tell us about?

◮ In case of no galactic SN: SN physics (ESN), upper
bound on SN and SF history

◮ In case of galactic SN: Stringent bounds on the SN and
Star Formation History

◮ Other neutrino properties not covered in this talk, like
decay rates

◮ Detection technique and Background reduction crucial

◮ Rough estimates:
◮ Detection propably possible within 10 years, including

Gadolinium Detection technique or liquid scintillators
◮ Good statistics with Megaton-class detectors in maybe

10-20 years
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