The Diffuse Supernova Neutrino Background

Clemens Kießig

Max-Planck-Institut für Physik München (Werner-Heisenberg-Institute)

DPG-Tagung 4. März 2008

イロト 不得 とう アイロト

Clemens Kießig

Introduction and Motivation Individual SN neutrino spectra SN rate Detectors and Backgrounds What can we learn? Summary

▲ロト ▲帰ト ▲ヨト ▲ヨト ニヨー の々ぐ

Clemens Kießig

Outline

Introduction and Motivation

Individual SN neutrino spectra

SN rate

Detectors and Backgrounds

What can we learn?

Summary

What is the DSNB and why would we be interested in it?

- Core-collapse Supernovae (SNe) are the most luminous Neutrino sources of the universe (3 × 10⁵³ erg)
- Only a handful neutrinos observed from one SN until now (SN1987A)
- Today's detector technology would measure thousands of events but galactic SNe are rare statistical events
- Look for the convolved flux of all past SNe instead The DSNB
- What could we learn?
 - About SN physics in general
 - About the SN history \Rightarrow star formation history
 - About neutrino properties
- DSNB Flux:

$$\frac{dF}{dE_0}(E_0) = \int_0^{z_{max}} \frac{\frac{dn}{dE_1}(E_0(z+1))R_{\rm SN}(z)dz}{H_0\sqrt{(z+1)^3\Omega_{m,0} + \Omega_{\Lambda,0}}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Clemens Kießig

original ν -spectrum $\frac{dn}{dE_1}(E)$, supernova rate $R_{\rm SN}(z)$

Individual SN neutrino spectrum

- \blacktriangleright Delayed explosion mechanism: neutron star binding energy $E_{\rm b}\approx 3\times 10^{53} {\rm erg}$ released in ν
- Different simulations: Garching group, Lawrence Livermore, Thompson Burrows & Pinto and others
- Example [Keil,Raffelt, Janka astro-ph/0303226]:

Roughly thermal spectra can be fitted to an analytic distribution (a-fit):

$$f_a(E) = rac{1}{c_a} \left(rac{E}{\overline{E}}
ight)^a \exp\left[-(a+1)rac{E}{\overline{E}}
ight],$$

3.1

Clemens Kießig

pinching factor a describes deviation from Maxwell-Boltzmann distribution

Introduction and Motivation Individual SN neutrino spectra SN rate Detectors and Backgrounds What can we learn? Summary

Individual SN neutrino spectrum

- Only interested in v
 _e easiest to detect (water cherenkov detectors, inverse beta decay)
- Oscillations [Lunardini,Smirnov hep-ph/0302033] can be neglected: Differences between simulations larger than difference between $(\bar{\nu}_{\mu}, \bar{\nu}_{\tau})$ and $\bar{\nu}_{e}$ spectra
- Uncertainties in E_b due to uncertainties in neutron star masses and equation of state

Clemens Kießig

- SN1987A analyses [Yuksel,Beacom07], [Loredo, Lamb astro-ph/0107260]: $(E_{tot,\overline{\nu_e}} = 84 \times 10^{51} erg); (< E_{\nu_e} >= 9 \pm 1.5 MeV)$
- These references and the simulations can be summarized:

•
$$E_{ ext{tot}, \bar{\nu}_{ ext{e}}} = 50^{+50}_{-20} \times 10^{51} ext{ erg}$$

$$\overline{E}_{\overline{\nu_e}} = 17^{+5}_{-8} \text{ MeV}$$

•
$$a_{\overline{\nu_e}} = 3.1 \pm 1.2$$

The supernova rate

- ▶ Direct measurements of $R_{\rm SN}$, both locally [Cappellaro&al01] and up to $z \approx 1$ [Dahlen&al04]. Problem: Low statistics, dust extinction
- ► Indirect observation by using the star formation rate (SFR) $\psi_*(z)$: $R_{\rm SN} \propto \psi_*$
 - UV-light: Young stars produce UV-light; dust extinction!
 - Emission-lines: Massive, early-type stars emit H_{α} line; dust extinction
 - Far infrared: Dust absorbs UV-light and reemits it in the Far infrared
 - Radio: Synchrotron radiation from CC SN; no dust extinction
 - X-ray: X-ray binaries; indirect
 - many more...
- ▶ Uncertainties in the conversion factor between SN rate and SFR due to uncertain critical mass $(7 10M_{\odot})$

▲ロト ▲帰ト ▲ヨト ▲ヨト ニヨー の々ぐ

The supernova rate

Clemens Kießig

Parameterize R_{SN} as follows:

• $R_{SN} = R_{SN}^0 (1+z)^{\beta}$ for z < 1• $R_{SN} = 2^{(\beta-\alpha)} (1+z)^{\alpha}$ for z > 1

 $\beta = 2.5 \pm 1.5$ [Hogg 01], [Hopkins,Beacom06]

• $\alpha = 0 \pm 2$ (large scatter in opinions)

▶ $R_{\rm SN}^0 = 0.7^{+1.9}_{-0.3} \times 10^{-4} \, {\rm yr}^{-1} \, {\rm Mpc}^{-3}$ (dust extinction)

Detectors

- detection cross section $\bar{\nu_e}p \rightarrow ne^+$ scales $\propto E_{\nu}^2$
- ▶ Water cherenkov detectors: SKs limit on the DSNB: $< 1.2\bar{\nu_e}cm^{-2}s^{-1}$ and less than 3 events/yr above 19.3*MeV* [Malek&al03] ($< 30\bar{\nu_e}cm^{-2}s^{-1}$ total, our baseline: $8^{+22}_{-5}\bar{\nu_e}cm^{-2}s^{-1}$, 0.33 events/yr at SK from 18–40 MeV)
- ► Gadolinium Trichloride GdCl₃ detection proposed; Coincidence measurement with neutron [Beacom&Vagins03]
- New megaton-class detectors: Hyper-K; UNO with fiducial volume of 1150Mt and 445 kt (respectively) proposed. 170 events in 5 years in (8–40) MeV (baseline case, UNO)
- ► Large liquid scintillation detectors like Low Energy Neutrino Astronomy (LENA) detector would use coincidence measurements; ≈ 10 events per year for (10-25 MeV) [Wurm&al'07]

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Backgrounds

- Reactor $\bar{\nu_e}$: At the SK site negligible at E > 12 MeV
- Atmospheric $\bar{\nu_e}$: Important from about 30 MeV
- ► Spallation: Cosmic Ray Muons split *O*-atoms, daughter products decay via beta-dacay, mimic a v_e-event. Reduceable, but not to arbitrarily low energies. Current SK-limit: 19.3*MeV*
- Sub-Cherenkov-muons: Muons from atmospheric neutrinos with a kinetic energy smaller than 50*MeV*, do not emit Cerenkov-light and cannot be detected, but decay into electrons ⇒ background to the DSNB.
- Spallation and sub-Cherenkov-muons can be further reduced by coincidence measurement (liquid scintillator, Gadolinium technique)

Backgrounds

Current situation

Backgrounds

Possible future situation

Clemens Kießig

What can we realistically learn?

▶ In absence of galactic SN: Future SFR observations might constrain $\beta \approx 2-3 \Rightarrow \overline{E}_{SN}$ constrained to ±2 MeV (5 yrs, megaton) ⇒ Important probe for SN simulations

What can we realistically learn?

- ► Case of a Galactic SN: very accurate knowledge (1–5%) of $E_{\text{tot}}^{\text{SN}}$; SFR measurements might determine β to 25% \Rightarrow Determine R_{SN}^{0} to 25% from the DSNB (5 years megaton detector performance).
- Only measurement placing an upper bound on R⁰_{SN}, not affected by dust extinction.

(日)

Summary

- What can the DSNB tell us about?
 - ► In case of no galactic SN: SN physics (*E*_{SN}), upper bound on SN and SF history
 - In case of galactic SN: Stringent bounds on the SN and Star Formation History
 - Other neutrino properties not covered in this talk, like decay rates
- Detection technique and Background reduction crucial
- Rough estimates:
 - Detection propably possible within 10 years, including Gadolinium Detection technique or liquid scintillators
 - Good statistics with Megaton-class detectors in maybe 10-20 years

◆□▶ ◆□▶ ◆三▶ ◆三▶ →三 ∽のへ⊙