Holographic Superfluidity from a Magnetic Field

Migael Strydom

Max-Planck-Institut für Physik, München

12 October 2012

Particle Physics School Munich Colloquium

In collaboration with Martin Ammon, Yan-Yan Bu, Johanna Erdmenger, Patrick Kerner, Jonathan Shock

→ Ξ → → Ξ →

Gauge/Gravity Duality

Image Source: Nature 448, 1000-1001(30 August 2007)

Migael Strydom

Holographic Superfluidity from a Magnetic Field

- 4 同 🕨 - 4 目 🕨 - 4 目

Gauge/gravity duality has been successful in exploring the phase diagram of large N gauge theories. Is there more that we can

Erdmenger, Kaminski, Kerner, Rust: arXiv:0807.2663

learn?

Gauge/gravity duality has been successful in exploring the phase diagram of large N gauge theories. Is there more that we can

ヨトィヨ

Erdmenger, Kaminski, Kerner, Rust: arXiv:0807.2663

learn?

B field instead of μ

We set up a very simple holographic model representing a gauge theory at finite temperature and a magnetic field B. From this model we find that not only does a superconducting phase transition occur when B increases beyond a critical value B_c , but...

- - 三下 - 三下

...the ground state forms a triangular Abrikosov lattice

→ Ξ → < Ξ</p>

Why is this interesting?

Holography gives us a handle on strongly coupled phenomena.

- QCD phenomena, like heavy ion collisions, ρ -meson physics.
- Condensed matter phenomena, like non-Fermi liquids, superconducting phase transitions.

We don't always know the underlying field theory — top-down vs bottom-up approach — but we get an idea of what strongly coupled matter can do.

(4月) (1日) (日)

Why is this interesting?

• Holographic superconductivity is an active field of research, with applications to both QCD phenomena and condensed matter physics.

Where I'm coming from:

- Superconductors: Gubser (2008), Hartnoll, Herzog, Horowitz (2008)
- Theories on a lattice: Horowitz, Santos, Tong, 2012.
- Spontaneously broken translational symmetry: Domokos, Harvey, 2007.
- Spontaneous breaking with magnetic field: Donos, Gauntlett, Pantelidou, 2011.

イロト イポト イラト イラト

• M. Chernodub proposed a mechanism by which the QCD vacuum can undergo a superconducting phase transition in 2010 (arXiv:1008.1055).

Strong magnetic field \Rightarrow gluon-mediated attraction between quark-antiquark pairs leads to new, superconducting ground state.

- - 三下 - 三下

Chernodub (2010): DSGS model and extended NJL model, with a $\sim F^{\mu\nu}\rho_{\mu\nu}$ interaction term.

$$\label{eq:DSGS} \begin{split} \mathsf{DSGS} &= \mathsf{Djukanovic}, \ \mathsf{Schindler}, \ \mathsf{Gegelia}, \ \mathsf{Scherer} \\ \mathsf{NJL} &= \mathsf{Nambu-Jona-Lasinio} \end{split}$$

4 3 5 4

How do we build our holographic superconductor?

To see if gauge/gravity duality can model this behaviour, and as a bonus yield a lattice ground state spontaneously, we need:

- Fundamental matter
- Magnetic field
- Finite temperature
- Order parameter

Holographic setup

The model:

$$S = \int d^5 x \sqrt{-g} \left\{ \frac{1}{16\pi G_N} \left(R + \frac{12}{L^2} \right) - \frac{1}{4\hat{g}^2} \operatorname{tr} \left(F_{\mu\nu} F^{\mu\nu} \right) \right\} + S_{\text{bdy}}$$

Assume the probe limit. The metric in 5 dimensions, working in Poincaré coordinates with the boundary at u = 0:

$$ds^{2} = \frac{L^{2}}{u^{2}} \left(-f(u)dt^{2} + dx^{2} + dy^{2} + dz^{2} + \frac{du^{2}}{f(u)} \right)$$

AdS-Schwarzschild: $f(u) = 1 - u^4/u_H^4$.

伺下 イヨト イヨト

Fundamental matter \Leftrightarrow D7-branes

• D7-branes (×2)

Strings with one endpoint on the D7-branes (and the other on the D3-branes) transform in the fundamental representation of SU(2). In the small α' limit, we have just an SU(2) gauge field.

A. Karch, E. Katz

- 王王 - 王王

Magnetic field \Leftrightarrow Magnetic field

• SU(2) flavour field Choose $F_{xy}^3 = B$, $F_{\mu\nu}^a = 0$ otherwise. Also fix $\mathcal{A}_y^3 = xB$ and other components so that only U(1)gauge symmetry remains.

Magnetic field \Leftrightarrow Magnetic field

Compare this to the case of a finite isospin chemical potential μ :

 $\begin{array}{rcl} \text{Isospin chemical potential} & \Leftrightarrow & \mathcal{A}_t^3 \text{ non-zero at boundary.} \\ & & & \text{Magnetic field} & \Leftrightarrow & \mathcal{A}_y^3 \text{ non-zero at boundary.} \end{array}$

伺 ト く ヨ ト く ヨ ト

Finite temperature \Leftrightarrow Black hole

• put a black hole with planar event horizon at $u = u_H$ $(f(u) = 1 - u^4/u_H^4).$

This is needed to fix a scale.

E. Witten (1998)

Vector current \Leftrightarrow Gauge field

• The remaining components of A^a_μ act as an order parameter. Boundary expansion:

$$\mathcal{A}^a_\mu \approx 0 + u^2 \langle J^a_\mu \rangle + \mathcal{O}(u^4)$$

- It is consistent to switch on only $\mathcal{A}_{x,y}^{1,2}(x,y,u)$.
- When $B < B_c$, these components are zero.
- When $B > B_c$, some of these components become nonzero.

下 化原因子属

Gauge fixing

We look at $B \approx B_c$. Then we can focus on a small condensate and look at fluctuations of $\mathcal{A} \approx \varepsilon A + \varepsilon^3 a + \ldots$. Defining $E_{x,y} = A_{x,y}^1 + iA_{x,y}^2$, we can focus on fields charged under the U(1):

$$E_L = x^2 B E_x - i(x \partial_x E_y - E_y)$$

$$\to e^{-i\Lambda^3} E_L$$

These source a vector condensate when they condense.

伺下 イヨト イヨト

But do they condense?

Quasinormal mode analysis: $E_L \sim e^{-i\omega t} E_L$.

Ammon, Erdmenger, Kerner, MS (2011)

-

So what is the true ground state?

- The quasinormal mode analysis shows that the ground state with no condensate is unstable.
- Can we show that the ground state is an Abrikosov lattice?
- There are many different lattice configurations. We study a few of them.
- Maeda, Natsuume, Okamura: 2+1 dimensional YM with a scalar.

arXiv:0910.4475

伺下 イヨト イヨト

Perturbative strategy

$$\nabla^{\mu} F^{a}_{\mu\nu} + \epsilon^{abc} \mathcal{A}^{b\mu} F^{c}_{\mu\nu} = 0.$$
$$\mathcal{E}_{x,y} = \mathcal{A}^{1}_{x,y} + i \mathcal{A}^{2}_{x,y}$$

9 coupled equations for 3 gauge components in x, y and radial directions. $\varepsilon \sim \langle J \rangle$. We need to go to $3^{\rm rd}$ order.

- 4 同 ト 4 目 ト

Linear order solution

$$E_x = \sum_{n=-\infty}^{\infty} C_n e^{-inky - \frac{1}{2}B_c \left(x - \frac{nk}{B_c}\right)^2} U(u)$$

- This is the Abrikosov solution.
- U(u) is the radial factor.
- Free parameters: k, C_n . We need to go to higher order to fix these.
- For $B \approx B_c$, C_n is small.

伺 ト く ヨ ト く ヨ ト

Fixing C_n

- We expect a lattice. This requires $C_n = C_{n+N}$ for some N.
- Choosing N = 1, $C_n = C$, and $k = \sqrt{2\pi B_c}$ gives a square lattice.
- Choosing N=2, $C_1=iC_0$, and $k=3^{\frac{1}{4}}\sqrt{\pi B_c}$ gives a triangular lattice.
- Choosing N = 2, $C_1 = iC_0$, and varying k can give a rhombic lattice.

$$F \sim \int du dx dy \ f(u) \mathcal{A}^2 + g(u) \mathcal{A}^4$$
$$\sim \int du \tilde{f}(u) C^2 + \tilde{g}(u) C^4$$

Migael Strydom Holographic Superfluidity from a Magnetic Field

We can plot the free energy as a function of $R = \frac{L_x}{L_y}$.

イロト イポト イヨト イヨト

Э

Ground state lattice

We find a triangular lattice ground state dynamically appearing.

This agrees with the field theory calculations in a DSGS model, and Abrikosov lattices in type II superconductors.

What comes next?

- Calculate transport coefficients in this background.
- How generic are these results? We can try in different backgrounds/dimensions. (We got very similar results for AdS-Schwarzschild and hard wall models).
- Look for heavy ion and condensed matter applications.

- 王王 - 王王

Thank you!

M. Ammon, J. Erdmenger, P. Kerner and M. Strydom arXiv:1106.4551

Y. Bu, J. Erdmenger, J. Shock and M. Strydom (To appear)

- 4 同 1 - 4 回 1 - 4 回 1