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SUSY PARTICLES AT THE LHC

We need precise theoretical predictions for physical observables used in the 
ongoing experimental searches of SUSY particles.

NLO differential corrections to the production and to the decay must be included 
to achieve the desired precision. 
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Figure 1: The observed meff distributions in the signal regions for the ≥ 2 jet channel (top left), the ≥ 3 jet channel (top right) and the two ≥ 4 jet channels (bottom
left), and for the high mass channel using the inclusive definition of meff (bottom right), after all the selection criteria but the meff cut. These plots also show the
expected SM contributions obtained from MC simulated samples prior to normalisation using the data-driven likelihood method described in the text. The red
arrows indicate the lower bounds on meff used in the final signal region selections. The expectation for a MSUGRA/CMSSM reference point with m0 = 660 GeV,
m1/2 = 240 GeV, A0 = 0, tan β = 10 and µ > 0 is also shown. This reference point is also indicated by the star on Figure 2. Below each plot the ratio of the
data to the SM expectation is provided. Black vertical bars show the statistical uncertainty from the data, while the yellow band shows the size of the systematic
uncertainties from the MC simulation.
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For an experimentalist

A. Diagrams of NLO corrections

Here, for completeness, we display all relevant diagrams used in our NLO calculation of squark-
squark production. The contribution of some of them vanish under the assumption mq = 0. For
example, this is the case for the 5th diagram on the 1st line when a != b; any helicity state of the
quark in the propagator can interact either with q̃i,a or with q̃j,b but not with both of them.
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Figure 11: Loop diagrams contributing to all flavour and chirality structures of squark–squark production.
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4. Squark decay

4.1 Squark decay at LO

The LO decay width for a squark decaying into a neutralino and a quark, q̃ → qχ̃0
j , depends on the

flavour and chirality of the squark. For mq = 0 the width can be written as follows,

Γ(0)
q̃a→qχ̃0

j
=

α

4
mq̃a

(

1−
m2

χ̃0
j

m2
q̃a

)

f2
a . (4.1)

The coupling constants fa can be expressed in terms of the isospin Iq3L and the charge eq of the
quark, together with the neutralino mixing matrix (Njk) including the electroweak mixing angle
through sW = sin θW and cW = cos θW ,

fL =
√
2
[

eqN
′
j1 + (Iq3L − eqs

2
W )

1

cW sW
N ′

j2

]

, (4.2)

fR =−
√
2
[

eqN
′
j1 − eq

sW
cW

N ′
j2

]

, (4.3)

N ′
j1 =cWNj1 + sWNj2, N ′

j2 = −sWNj1 + cWNj2 . (4.4)

For a scalar particle decaying in its rest frame there is no preferred direction, and hence the dif-
ferential decay distribution is isotropic. For squark decays into neutralino and quark, the decay
distribution is thus simply given by

dΓ(0)
q̃→qχ̃0

j
=

1

4π
Γ(0)
q̃→qχ̃0

j
dcosθ dφ (4.5)

with polar angle θ and azimuth φ referring to the quark momentum.

4.2 NLO squark decay distribution

The differential decay width for q̃ → qχ̃0
j at NLO is obtained in analogy to the steps in section

3.2 by adding the virtual loop corrections and the real gluon bremsstrahlung contribution from the
soft, collinear, and hard non-collinear phase space regions, yielding the full NLO contribution in
the form

dΓ(1)
q̃→qχ̃0

j
= dΓvirtual

q̃→qχ̃0
j
+ dΓsoft

q̃→qχ̃0
j (g)

+ dΓcoll
q̃→qχ̃0

j (g)
+ dΓhard

q̃→qχ̃0
jg

. (4.6)

The virtual corrections dΓvirtual
q̃→qχ̃0

j
formq = 0 correspond to the two vertex loop diagrams in figure 4(a)

and the vertex counter term (indicated by the cross in figure 4(a)), which consists of the wave-
function renormalization constants of the external quark and squark line. As for the production
amplitudes, the renormalization constants are determined in the on-shell renormalization scheme.
Details on the vertex counter term can be found in [39], and the explicit analytical expression is
given in eq. (C.3) of Appendix C.
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Figure 4: Loop and counterterm diagrams (a) and gluon radiation diagrams (b) for squark decays.
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We present the analysis of the signature jj+ �ET (+X) via squark–squark pro-
duction and direct decay into the lightest neutralino, pp → q̃q̃� → jjχ̃0

1χ̃
0
1(+X),

in next-to-leading order QCD within the framework of the minimal supersym-
metric Standard Model.
We provide a consistent, fully differential calculation of NLO QCD factorizable
corrections to the given processes with on-shell squarks.
Clustering final states into partonic jets, we investigate the experimental inclu-
sive signature jj+ �ET and we choose for illustration several benchmark scenarios.
We compare resulting differential distributions with leading-order approxima-
tion rescaled by a flat K-factor and examine a possible impact for cut-and-count
searches for supersymmetry at the LHC.

pp → q̃q̃� → qq�χ̃0
1χ̃

0
1(+X)

1

q

q
′

q̃

g̃

q̃
′

q

q
′

χ̃
0
1

χ̃
0
1

SPS1a ũL ũR d̃L d̃R g̃ χ̃0
1

mass (GeV) 563.6 546.7 569.0 546.6 608.5 97.0

Table 1: On-shell masses of the squarks, the gluino, and the lightest neutralino within the different SUSY

scenarios considered. All masses are given in GeV.

10.1.5 ũL ũR d̃L d̃R g̃ χ̃0
1

mass (GeV) 1437.7 1382.3 1439.7 1376.9 1568.6 291.3

Table 2: On-shell masses of the squarks, the gluino, and the lightest neutralino within the different SUSY

scenarios considered. All masses are given in GeV.

We present the analysis of the signature jj+ �ET (+X) via squark–squark production and direct
decay into the lightest neutralino, pp → q̃q̃� → jjχ̃0

1χ̃
0
1(+X), in next-to-leading order QCD within

the framework of the minimal supersymmetric Standard Model.
We provide a consistent, fully differential calculation of NLO QCD factorizable corrections to the
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Clustering final states into partonic jets, we investigate the experimental inclusive signature jj +
�ET and we choose for illustration several benchmark scenarios. We compare resulting differential
distributions with leading-order approximation rescaled by a flat K-factor and examine a possible
impact for cut-and-count searches for supersymmetry at the LHC.
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i,j∈{0,1}

Mi�,j�

Mi,j = Mprod
Mdecay1Mdecay2

K1K2
M�

i,j = M�
prod
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i,j) = Re(M∗
prodM�

prod)Re(M∗
decay1

M�
decay1

)Re(M∗
decay2

M�
decay2

)
1

|K1|2|K2|2

dσ(0+1)

NWA(pp → q̃q̃� → qχ̃0
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q̃

−
Γ(1)
q̃�

Γ(0)
q̃�

�

+dσ(0)
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We study the experimental signature

via squark-squark production and direct 
decay into the lightest neutralino.

[Falgari, Schwinn, Wever, ’12]

LO, LHC 7 TeV

Why squark-squark channel?Full LO process
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via squark-squark production and direct 
decay into the lightest neutralino.

We study the experimental signature

Production of events with a parton shower generator with LO matrix elements 
and rescaling with a global K factor for NLO QCD corrections to the total cross-
section of squark-squark production (calculated with Prospino).



Standard procedure:

Our procedure:

Including fully differential NLO corrections to both the decay and production, 
where in the calculation all flavour and chirality configurations of intermediate 
squarks are treated independently.
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Production of events with a parton shower generator with LO matrix elements 
and rescaling with a global K factor for NLO QCD corrections to the total cross-
section of squark-squark production (calculated with Prospino).



problem of unstable particles

idea of calcultaion

overview of article

When squarks and gluino not too heavy large production cross section for colored sparticle pro-
duction. And due to PDFs for rather heavy q̃, g̃ one of the largest contributions is q̃q̃ production.

2. Method

We investigate the production of squark-squark pairs of the first two generations induced by proton-
proton collision, with subsequent decays of the squarks into lightest neutralinos. The only partonic
subprocesses that contribute are

qiqj → q̃i,aq̃j,b → qiχ̃
0
1qjχ̃

0
1 , q̄iq̄j → q̃∗i,aq̃

∗
j,b → q̄iχ̃

0
1q̄jχ̃

0
1 , (2.1)

[L: correct to put here also the c.c. process, right? ] where i, j = {u, d, c, s} denote the flavours of
the (s)quarks and a, b = {L,R} their chiralities. For the sake of clarity we will use the notation
qq′ → q̃q̃′ → qχ̃0

1q
′χ̃0

1 where the specific chiralities and flavour are not important in the discussion.
Also, we will usually drop the explicit notion of the charge conjugate subprocess, as all following
arguments hold identically. We include it however in our numerical evaluation.
In the considered process, squarks appears as intermediate particles [L: particles vs. states? i don’t
care]. In the limit Γq̃/mq̃ → 0, where Γq̃ and mq̃ are the total decay width and mass of the squarks,
their contribution from the propagators in the squared amplitude can be rewritten as following

1

(p2 −m2
q̃)

2 +m2
q̃Γ

2
q̃

→
π

mq̃Γq̃
δ(p2 −m2

q̃) . (2.2)

[L: define p? ] As explained in Appendix ??, in the narrow width approximation (NWA) the Born
partonic total cross section can now be expressed as

σ̂(0)

NWA = σ̂(0)(qq′ → q̃q̃′)×BR(0)(q̃ → qχ̃0
1)× BR(0)(q̃′ → q′χ̃0

1) . (2.3)

Thus, the squarks are produced on-shell and the 2 → 2 partonic cross section at Born level is given
by σ̂(0), the respective Born level branching ratios (BR) by BR(0). In this limit we exclude off-shell
squark contributions and we can consistently consider the process as independent production of the
squarks and their following decays. Thus, the calculation can be factorized into two [L: three?? two
decays! don’t now ] steps. [L: suggest to drop: , making analytical and numerical computations.]
[P: I would drop the sentence: The Born case is anyway straightforward also without narrow width
approximation, so it can be used to estimate the numerical effects of neglecting the subleading terms
in the expansion Γ/m → 0.][L: jep, we can put a note on our other paper: ”Will be presented
elsewhere..]
[L: drop: The main goal of this work is the study of differential distributions including higher order
effects.] Due to the scalar nature of the squark and thus the lack of spin correlations between pro-
duction stage and decay stages of the considered process, at LO eq. (2.3) can directly be generalized
to a complete differential form,

dσ̂(0)

NWA
dtdφd cos(θ̃1)dφ̃1d cos(θ̃2)dφ̃2

=
dσ̂(0)

qq′→q̃q̃′

dtdφ

1

Γtot
q̃

dΓ(0)
q̃→qχ̃0

1

d cos(θ̃1)dφ̃1

1

Γtot
q̃′

dΓ(0)
q̃′→q′χ̃0

1

d cos(θ̃2)dφ̃2

. (2.4)
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dσ
(0+1)

NWA(pp → q̃q̃′ → qχ̃0
1q

′χ̃0
1(+X)) =

1

Γ(0)
q̃ Γ(0)

q̃′

[

dσ
(0)
pp→q̃q̃′dΓ

(0)
q̃→qχ̃0

1

dΓ(0)
q̃′→q′χ̃0

1

(

1−
Γ(1)
q̃

Γ(0)
q̃

−
Γ(1)
q̃′

Γ(0)
q̃′

)

+dσ
(0)
pp→q̃q̃′dΓ

(1)
q̃→qχ̃0

1

dΓ(0)
q̃′→q′χ̃0

1

+ dσ
(0)
pp→q̃q̃′dΓ

(0)
q̃→qχ̃0

1

dΓ(1)
q̃′→q′χ̃0

1

+dσ
(1)
pp→q̃q̃′dΓ

(0)
q̃→qχ̃0

1

dΓ(0)
q̃′→q′χ̃0

1

]

qq′ → q̃q̃′ → qχ̃0
1q

′χ̃0
1

2

p

p

q

q
′

χ̃
0
1

χ̃
0
1

q̃q̃
′

p

p

q̃

q̃
′

q̃

q

χ̃
0
1

q̃
′

q
′

χ̃
0
1

LO in NWA

Hadronic differential LO cross section in NWA 

p19MSSM1 ũL ũR d̃L d̃R g̃ χ̃0

1

mass (GeV) 339.6 394.8 348.3 392.7 414.7 299.1

Table 3: On-shell masses of the squarks, the gluino, and the lightest neutralino within the different SUSY

scenarios considered. All masses are given in GeV.

dσ
(1)
pp→q̃q̃′(+X) = dσvirtual+soft

pp→q̃q̃′(g) + dσcoll
pp→q̃q̃′(g) + dσhard

pp→q̃q̃′g + dσreal-quark
pp→q̃q̃′ q̄(′)

dΓ(1)
q̃→qχ̃0

1
= dΓvirtual+soft

q̃→qχ̃0
1(g)

+ dΓcoll
q̃→qχ̃0

1(g)
+ dΓhard

q̃→qχ̃0
1g

δgs = gsδZgs (3)

dσ
(0)

NWA(pp → q̃q̃′ → qχ̃0
1q

′χ̃0
1(+X)) =

1

Γ(0)
q̃ Γ(0)

q̃′

[

dσ
(0)
pp→q̃q̃′dΓ

(0)
q̃→qχ̃0

1
dΓ(0)

q̃′→q′χ̃0
1

]
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squark–squark pairs at NLO.

In the big picture of the complete calculation of NLO QCD corrections to pp → 2j + "ET (+X),
also q̃q̃′∗, g̃q̃ and g̃g̃ intermediate states can contribute to this signature. Already without system-
atically including decays of the squarks, the calculation of NLO corrections to on-shell production
of such pairs of coloured sparticles carries problems of double counting. Parts of NLO corrections
to one final state can be identified as LO of another final state where the decay is already included.
The standard solution, used to avoid this double counting problem, can not be straightforwardly
extended to the calculation where decays (and off-shell effects) are included from the beginning.
Moreover, complete NLO corrections to pp → qq′χ̃0

1χ̃
0
1 do not only include factorizable contribu-

tions, i.e., contributions that can be classified as corrections to the production or to the decays, but
also non-factorizable contributions, where such a separation is not possible. In this paper we ana-
lyze the factorizable NLO corrections to squark–squark production and decay, which are expected
to yield the dominant part of the NLO contributions. Non-factorizable effects and off-shell contri-
butions will be analyzed in a forthcoming publication, providing a consistent conceptual approach
and evaluating their numerical effects.

The outline of this paper is as follows. In section 2 the method of combining consistently
production and decay at NLO in the narrow-width-approximation is described. In the following
two sections the calculation of all required ingredients of this combination is explained, with respect
to the squark production processes in section 3, and to the squark decays in 4. In section 5 we
present our numerical result for representative benchmark points, and conclude with a summary in
section 6.

2. Method

We investigate the production of squark-squark pairs induced by proton-proton collisions, with
subsequent decays of the squarks into the lightest neutralinos. Since we are interested in the exper-
imental signature 2j + "ET (+X), all contributions from light-flavour squarks have to be included,
hence the cross section is given by

dσ =
∑

i,j∈{u,d,c,s}
a,b∈{L,R}

[

dσ(pp → q̃i,aq̃j,b → qiχ̃
0
1qjχ̃

0
1(+X)) + dσ(pp → q̃∗i,aq̃

∗
j,b → q̄iχ̃

0
1q̄jχ̃

0
1(+X))

]

.

(2.1)

Indices i, j denote the flavours of the (s)quarks and a, b their chiralities. At LO, the only partonic
subprocesses that contribute to a given intermediate configuration q̃i,aq̃j,b or q̃∗i,aq̃

∗
j,b arise from quark

and anti-quark pairs, respectively, qiqj → q̃i,aq̃j,b → qiχ̃0
1qjχ̃

0
1 and q̄iq̄j → q̃∗i,aq̃

∗
j,b → q̄iχ̃0

1q̄jχ̃
0
1.

For simplifying the notation, we will write qq′ → q̃q̃′ → qχ̃0
1q

′χ̃0
1 whenever the specification

of flavour and chiralities is not required 1. Moreover, we will perform the discussion without the
charge-conjugate subprocesses; they are, however, included in the final results.

In the considered class of processes, squarks appear as intermediate particles with mass mq̃ and
total decay width Γq̃. In the limit Γq̃/mq̃ → 0 , the narrow width approximation (NWA), their
resonating contributions in the squared amplitude can be approximated by the replacement

1

(p2 −m2
q̃)

2 +m2
q̃ Γ

2
q̃

→
π

mq̃ Γq̃
δ(p2 −m2

q̃) , (2.2)

1In this notation q̃ = q̃′ implies q = q′, but not vice versa
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(
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(0)
pp→q̃q̃′dΓ

(1)
q̃→qχ̃0

1
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1
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At LO amplitudes and cross sections for the production of squarks 
depend on the flavours (i, j indices) and on the chiralities (a,b indices) 
of the squarks.

Different combinations give different differential distributions 
(           has no u-channel diagram and         ,             no t- and u-channel 
interference). 

This is crucial for studying production + decay, as decay in general 
very different for the two chiralities. 

a �= bi = j

p

p

q̃

q̃
′

i �= j

LO production



Besides the dominating QCD contributions, there are also tree-level electroweak production chan-
nels [36, 43] with chargino and neutralino exchange, which can interfere with the QCD amplitude
providing a contribution to the cross-section of O(ααs). In principle these terms can be numerically
of similar importance as the NLO QCD O(α3

s) corrections we are investigating. For the present
study, the electroweak contributions are neglected.

3.2 NLO squark–squark production

The NLO QCD corrections to squark–squark production have been known for many years [24] and
an efficient public code (Prospino 2) is available for the calculation of total cross sections at NLO.
However, in order to study systematically the 2j + !ET (+X) signature emerging from production
of squark–squark pairs and subsequent decays into the lightest neutralino, also the complete dif-
ferential cross section is necessary. To this purpose, we perform an independent (re)calculation
of the NLO QCD corrections, where we treat the masses for q̃L, q̃R and all chirality and flavour
configurations independently. In [24] different squark chiralities are treated as mass degenerate and
NLO contribution are always summed over all chirality and flavour combinations.

NLO calculations involve, in intermediate steps, infrared and collinear divergences. Since our
calculation does not involve any diagrams with non-Abelian vertices, infrared singularities can be
regularized by a gluon mass (λ) . Collinear singularities, in analogy, can be regularized by a quark
mass (mq), that is kept at zero everywhere else in the calculation. The cancellation of these two
kinds of singularities is obtained by summing the virtual loop contributions and the real gluon
bremsstrahlung part, with subsequent mass factorization in combination with the choice of the
parton densities.

The complete NLO corrections to the differential cross section can be written symbolically in
the following way,

dσ(1)
pp→q̃q̃′(+X) = dσvirtual+soft

pp→q̃q̃′(g) + dσcoll
pp→q̃q̃′(g) + dσhard

pp→q̃q̃′g + dσreal-quark
pp→q̃q̃′ q̄(′)

. (3.5)

With dσvirtual+soft
pp→q̃q̃′(g) we denote the summed contributions from the renormalized virtual corrections

and soft gluon emission; dσcoll
pp→q̃q̃′(g) corresponds to initial state collinear gluon radiation including

the proper subtraction term for the collinear divergences; dσhard
pp→q̃q̃′g denotes the remaining hard

gluon emission outside the soft and collinear phase space regions. dσreal-quark
pp→q̃q̃′ q̄(′)

is the contribution
from real quark emission from additional quark–gluon initial states contributing at NLO.

Technically, the calculation of the loop corrections and real radiation contributions is performed
separately for every flavour and chirality combination, qiqj → q̃iaq̃jb, with the help of FeynArts [69]
and FormCalc [70,71]. Appendix A shows a collection of the contributing Feynman diagrams. Loop
integrals are numerically evaluated with LoopTools [70].

3.2.1 Virtual corrections and real gluon radiation

In the term dσvirtual+soft
pp→q̃q̃′(g) the virtual and soft contributions are added at the parton level, according

to

dσvirtual+soft
pp→q̃q̃′(g) =

∫ 1

τ0

dτ Lqq′ (τ) dσ̂
virtual+soft
qq′→q̃q̃′(g) (τ) ,

dσ̂virtual+soft
qq′→q̃q̃′(g) (τ) = dσ̂virtual

qq′→q̃q̃′ + dσ̂soft
qq′→q̃q̃′(g) . (3.6)

The fictitious gluon mass λ for infrared regularization cancels in the sum of dσ̂virtual
qq′→q̃q̃′ and dσ̂soft

qq′→q̃q̃′(g).

At NLO, UV finiteness requires renormalization by inclusion of appropriate counterterms, which
can be found explicitly in [39]. All mass and field renormalization constants are determined accord-
ing to the on-shell scheme. The renormalization of the QCD coupling constant (δgs = gs δZgs) has
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A. Diagrams of NLO corrections

Here, for completeness, we display all relevant diagrams used in our NLO calculation of squark-
squark production. The contribution of some of them vanish under the assumption mq = 0. For
example, this is the case for the 5th diagram on the 1st line when a != b; any helicity state of the
quark in the propagator can interact either with q̃ia or with q̃jb but not with both of them.
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Figure 11: Loop diagrams contributing to all flavour and chirality structures of squark–squark production.
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Figure 12: Loop diagrams contributing only for squarks with equal flavour.
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In the ”Prospino scheme” [24, 76] contributions from squared matrix elements with resonant
diagrams are eliminated in a different way. A small non-physical width is used to regularize and
subtract on-shell gluino-squark production with associated gluino decay. The ”Prospino scheme”
is well suited for calculations of production processes. It can not straightforwardly be extended to
calculations where decays and/or off-shell effects are included in all channels.

For the practical calculation of the real quark radiation contributions, one has to perform the
phase space integration over the final state quark. The squared non-resonant terms in eq. (3.14)
and eq. (3.15) lead to initial state collinear singularities. Again, these singular terms have to be
subtracted since they are factorized and absorbed into the PDFs. Like in the case of gluon radiation,
we divide the emission of a quark into a collinear and a non-collinear region (since no IR singularities
occur, a separation into soft and hard quark emission is not required),

dσreal-quark
q̃ia q̃jb q̄i/j

=
∑

k=i,j

1

1 + δi,j

[

dσcoll-quark
pp→q̃ia q̃jb q̄k

+ dσnoncoll-quark
pp→q̃ia q̃jb q̄k

]

. (3.16)

The non-collinear contribution

dσnoncoll-quark
pp→q̃ia q̃jb q̄k

=

∫ 1

τ0

dτ Lnoncoll-quark
ijk (τ) dσ̂qiqj→q̃ia q̃jb q̄k(τ) , (3.17)

contains Lnoncoll−quark
ijk (τ) as given in eq. (B.9). The collinear emission together with the subtraction

terms for the PDFs instead can be written as follows,

dσcoll-quark
pp→q̃ia q̃jb q̄k

= (δik + δjk)

∫ 1

τ0

dτ

∫ 1

τ

dx

x

∫ 1

x

dz

z
Lcoll-quark
ijk (τ, x, z) dσ̂coll-quark

qig→q̃ia q̃jb q̄k
(τ, z) ,

(3.18)

with Lijk(τ, x, z)coll-quark and dσ̂coll-quark
qig→q̃ia q̃jb q̄k

(τ, z) defined in eq. (B.7) and eq. (B.8) of Appendix B.
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diagrams are eliminated in a different way. A small non-physical width is used to regularize and
subtract on-shell gluino-squark production with associated gluino decay. The ”Prospino scheme”
is well suited for calculations of production processes. It can not straightforwardly be extended to
calculations where decays and/or off-shell effects are included in all channels.

For the practical calculation of the real quark radiation contributions, one has to perform the
phase space integration over the final state quark. The squared non-resonant terms in eq. (3.14)
and eq. (3.15) lead to initial state collinear singularities. Again, these singular terms have to be
subtracted since they are factorized and absorbed into the PDFs. Like in the case of gluon radiation,
we divide the emission of a quark into a collinear and a non-collinear region (since no IR singularities
occur, a separation into soft and hard quark emission is not required),
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]

. (3.16)

The non-collinear contribution
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=

∫ 1

τ0

dτ Lnoncoll-quark
ijk (τ) dσ̂qiqj→q̃ia q̃jb q̄k(τ) , (3.17)

contains Lnoncoll−quark
ijk (τ) as given in eq. (B.9). The collinear emission together with the subtraction

terms for the PDFs instead can be written as follows,
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(τ, z) defined in eq. (B.7) and eq. (B.8) of Appendix B.
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NLO total decay

analytical universal form factor,
 recalculated with independent regulators

[Djouadi, Hollik, Jünger; ’97]

NLO decay q̃

q

χ̃
0
1

4. Squark decay

4.1 Squark decay at LO

The LO decay width for a squark decaying into a neutralino and a quark, q̃ia → qiχ̃0
j , depends on

the flavour and chirality of the squark. For mq = 0 the width can be written as follows,

Γ(0)
q̃ia→qiχ̃0

j
=

α

4
mq̃ia

(

1−
m2

χ̃0
j

m2
q̃ia

)

f2
a . (4.1)

The coupling constants fa can be expressed in terms of the isospin Iq3L and the charge eq of the
quark, together with the neutralino mixing matrix (Njk) including the electroweak mixing angle
through sW = sin θW and cW = cos θW ,

fL =
√
2
[

eqN
′
j1 + (Iq3L − eqs

2
W )

1

cW sW
N ′

j2

]

, (4.2)

fR =−
√
2
[

eqN
′
j1 − eq

sW
cW

N ′
j2

]

, (4.3)

N ′
j1 =cWNj1 + sWNj2, N ′

j2 = −sWNj1 + cWNj2 . (4.4)

For a scalar particle decaying in its rest frame there is no preferred direction, and hence the dif-
ferential decay distribution is isotropic. For squark decays into neutralino and quark, the decay
distribution is thus simply given by

dΓ(0)
q̃→qχ̃0

j
=

1

4π
Γ(0)
q̃→qχ̃0

j
dcosθ dφ (4.5)

with polar angle θ and azimuth φ referring to the quark momentum.

4.2 NLO squark decay distribution

The differential decay width for q̃ → qχ̃0
j at NLO is obtained in analogy to the steps in section

3.2 by adding the virtual loop corrections and the real gluon bremsstrahlung contribution from the
soft, collinear, and hard non-collinear phase space regions, yielding the full NLO contribution in
the form

dΓ(1)
q̃→qχ̃0

j
= dΓvirtual

q̃→qχ̃0
j
+ dΓsoft

q̃→qχ̃0
j (g)

+ dΓcoll
q̃→qχ̃0

j (g)
+ dΓhard

q̃→qχ̃0
jg

. (4.6)

The virtual corrections dΓvirtual
q̃→qχ̃0

j
formq = 0 correspond to the two vertex loop diagrams in figure 4(a)

and the vertex counter term (indicated by the cross in figure 4(a)), which consists of the wave-
function renormalization constants of the external quark and squark line. As for the production
amplitudes, the renormalization constants are determined in the on-shell renormalization scheme.
Details on the vertex counter term can be found in [39], and the explicit analytical expression is
given in eq. (C.3) of Appendix C.
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Figure 4: Loop and counterterm diagrams (a) and gluon radiation diagrams (b) for squark decays.
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COMBINATION

For all different combinations of light flavours and 
chiralities, weighted events for squark-squark 
production are produced in the LAB frame.

Weighted decay events are generated in the 
respective squark rest-frame.

“master formula”boost of decay events

Fully differential distributions of factorizable NLO 
contributions in NWA.
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NUMERICAL RESULTS
We cluster partons into jets with anti-kT algorithm, R=0.4 (ATLAS) and 
R=0.5 (CMS) and we always select jets according to:

study, our results seem to be independent of this choice. After performing the jet clustering we sort
the partonic jets by their pT and we always apply a cut on the transverse momentum of the two
hardest jets and on the pseudorapidity of any jet:

pTj1/2 > 20 GeV |ηj | < 2.8, (5.2)

pTji > 50 GeV |ηj | < 3.0 (for CMS observables) . (5.3)

Cuts of 5.2 are used everywhere but in the observables used specifically by CMS (HT and αT , as
defined below).

Before showing results for the experimental signature 2j+ !ET (+X), in section 5.3.1 we compare
values for NLO total cross sections of squark-squark production, without decay included, with
results obtained using Prospino 2. In section 5.3.2 we investigate the effect of NLO corrections,
for different benchmark points, on the following differential distributions:

• the transverse momentum of the two hardest jets pT1/2,

• the pseudorapidity of the two hardest jets η1/2,

• the missing transverse energy !ET ,

• the effective mass meff =
∑

i=1,2
pTi + !ET ,

• the scalar sum of the pT of all jets (visible after cuts of eq. (5.3)), HT =
∑

i=1,2(,3)

pTi ,

• the invariant mass of the two hardest jets minv(jj),

• the cosine of the angle between the two hardest jets cosΘjj , which depends on the spin of the
produced particles and therefore might help to distinguish SUSY from other BSM models [10],

• cos Θ̂ = tanh
(

∆ηjj

2

)

, ηjj = η1 − η2, introduced in [9] as a possible observable for early spin

determination at the LHC,

• the αT variable, first defined in [80], where for hard real radiation events with three jets and
pT3 > 50 GeV, these jets are reclustered into two pseudojets by minimizing the difference of
the respective HT of the two pseudojets, as explained in [81, 82]. Furthermore, in all αT

distributions we require HT > 350 GeV as in [?].

Searches for sparticle production performed by ATLAS are based on pT, !ET and meff cuts; CMS
instead uses αT to reduce SM backgrounds. In section 5.3.3 we examine NLO corrections in the
resulting event rates after cuts. Explicitly we employ the following cuts used by ATLAS,

pTj1 > 130 GeV, pTj2 > 40 GeV, |ηj1/2 | < 2.8, ∆φ(j1/2, $!ET ) > 0.4, (5.4)

meff > 1 TeV, !ET /meff > 0.3,

in their two-jet analysis. Here,∆φ(j1/2, $!ET ) denotes the angular seperation between the two hardest
jets and the direction of missing energy. Instead the CMS signal region is defined as

pTj1/2 > 100 GeV, |ηj1 | < 2.5, |ηj2 | < 3.0, (5.5)

HT > 350 GeV, !HT / !ET < 1.25, αT > 0.55,

where !HT is calculated from $HT .
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SPS1a (14 TeV) 
Scale variation: µf = µr =(m/2,m,2m),  m: average squark mass 

pT1 Emiss
T

SPS1a ũL ũR d̃L d̃R g̃ χ̃0

1

mass (GeV) 563.6 546.7 569.0 546.6 608.5 97.0

Table 1: On-shell masses of the squarks, the gluino, and the lightest neutralino within the different SUSY

scenarios considered. All masses are given in GeV.

10.1.5 ũL ũR d̃L d̃R g̃ χ̃0

1

mass (GeV) 1437.7 1382.3 1439.7 1376.9 1568.6 291.3

Table 2: On-shell masses of the squarks, the gluino, and the lightest neutralino within the different SUSY

scenarios considered. All masses are given in GeV.

We present the analysis of the signature jj+ !ET (+X) via squark–squark production and direct
decay into the lightest neutralino, pp → q̃q̃′ → jjχ̃0

1χ̃
0
1(+X), in next-to-leading order QCD within

the framework of the minimal supersymmetric Standard Model.
We provide a consistent, fully differential calculation of NLO QCD factorizable corrections to the
given processes with on-shell squarks.
Clustering final states into partonic jets, we investigate the experimental inclusive signature jj +
!ET and we choose for illustration several benchmark scenarios. We compare resulting differential
distributions with leading-order approximation rescaled by a flat K-factor and examine a possible
impact for cut-and-count searches for supersymmetry at the LHC.

pp → q̃q̃′ → qq′χ̃0
1χ̃

0
1(+X)

M =
∑

i,j∈{0,1}

Ni,j

[(k1 ± δ1,iq)2 −m2
q̃ + iΓq̃mq̃][(k2 ± δ1,jq)2 −m2

q̃ + iΓq̃mq̃]
=

∑

i,j∈{0,1}

Mi,j (1)

M′ =
∑

i′,j′∈{0,1}

N ′
i′,j′

[(k1 ± δ1,i′q)2 −m2
q̃ + iΓq̃mq̃][(k2 ± δ1,j′q)2 −m2

q̃ + iΓq̃mq̃]
=

∑

i,j∈{0,1}

Mi′,j′

Mi,j = Mprod
Mdecay1Mdecay2

K1K2
M′

i,j = M′
prod

M′
decay1

M′
decay2

K1K2
(2)

|Mreal|
2 = |Mreal,prod|

2 + |Mreal,decay1|
2 + |Mreal,decay2|

2 +

2Re(Mreal,prod,M
∗
real,decay1) + 2Re(Mreal,prod,M

∗
real,decay2) + 2Re(Mreal,decay1,M

∗
real,decay2)

Re(M∗
i,jM

′
i,j) = Re(M∗

prodM
′
prod)Re(M

∗
decay1

M′
decay1

)Re(M∗
decay2

M′
decay2

)
1

|K1|2|K2|2

dσ
(0+1)

NWA(pp → q̃q̃′ → qχ̃0
1q

′χ̃0
1(+X)) =

1

Γ(0)
q̃ Γ(0)

q̃′

[

dσ
(0)
pp→q̃q̃′dΓ

(0)
q̃→qχ̃0

1
dΓ(0)

q̃′→q′χ̃0
1

(

1−
Γ(1)
q̃

Γ(0)
q̃

−
Γ(1)
q̃′

Γ(0)
q̃′

)

+dσ
(0)
pp→q̃q̃′dΓ

(1)
q̃→qχ̃0

1
dΓ(0)

q̃′→q′χ̃0
1
+ dσ

(0)
pp→q̃q̃′dΓ

(0)
q̃→qχ̃0

1
dΓ(1)

q̃′→q′χ̃0
1

+dσ
(1)
pp→q̃q̃′dΓ

(0)
q̃→qχ̃0

1
dΓ(0)

q̃′→q′χ̃0
1

]

qq′ → q̃q̃′ → qχ̃0
1q

′χ̃0
1
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(PDFs: CTEQ6.6 both for LO and NLO)



CMSSM 10.1.5 (14 TeV) 
Comparison between NLO and LO rescaled by global K-factor

SPS1a ũL ũR d̃L d̃R g̃ χ̃0
1

mass (GeV) 563.6 546.7 569.0 546.6 608.5 97.0

Table 1: On-shell masses of the squarks, the gluino, and the lightest neutralino within the different SUSY

scenarios considered. All masses are given in GeV.

10.1.5 ũL ũR d̃L d̃R g̃ χ̃0
1

mass (GeV) 1437.7 1382.3 1439.7 1376.9 1568.6 291.3

Table 2: On-shell masses of the squarks, the gluino, and the lightest neutralino within the different SUSY

scenarios considered. All masses are given in GeV.

We present the analysis of the signature jj+ �ET (+X) via squark–squark production and direct
decay into the lightest neutralino, pp → q̃q̃� → jjχ̃0

1χ̃
0
1(+X), in next-to-leading order QCD within

the framework of the minimal supersymmetric Standard Model.
We provide a consistent, fully differential calculation of NLO QCD factorizable corrections to the
given processes with on-shell squarks.
Clustering final states into partonic jets, we investigate the experimental inclusive signature jj +
�ET and we choose for illustration several benchmark scenarios. We compare resulting differential
distributions with leading-order approximation rescaled by a flat K-factor and examine a possible
impact for cut-and-count searches for supersymmetry at the LHC.

pp → q̃q̃� → qq�χ̃0
1χ̃

0
1(+X)

M =
�

i,j∈{0,1}

Ni,j

[(k1 ± δ1,iq)2 −m2
q̃ + iΓq̃mq̃][(k2 ± δ1,jq)2 −m2
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=
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N �
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real,decay1) + 2Re(Mreal,prod,M∗
real,decay2) + 2Re(Mreal,decay1,M∗

real,decay2)

Re(M∗
i,jM�
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prodM�

prod)Re(M∗
decay1
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decay1
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decay2
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decay2

)
1

|K1|2|K2|2

dσ(0+1)

NWA(pp → q̃q̃� → qχ̃0
1q

�χ̃0
1(+X)) =

1

Γ(0)
q̃ Γ(0)

q̃�

�
dσ(0)

pp→q̃q̃�dΓ
(0)
q̃→qχ̃0

1
dΓ(0)

q̃�→q�χ̃0
1

�
1−

Γ(1)
q̃

Γ(0)
q̃

−
Γ(1)
q̃�

Γ(0)
q̃�

�

+dσ(0)
pp→q̃q̃�dΓ

(1)
q̃→qχ̃0

1
dΓ(0)

q̃�→q�χ̃0
1
+ dσ(0)

pp→q̃q̃�dΓ
(0)
q̃→qχ̃0

1
dΓ(1)

q̃�→q�χ̃0
1

+dσ(1)
pp→q̃q̃�dΓ

(0)
q̃→qχ̃0

1
dΓ(0)

q̃�→q�χ̃0
1

�

qq� → q̃q̃� → qχ̃0
1q
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CMSSM 10.1.5 (14 TeV) 
Comparison between NLO and LO rescaled by global K-factor:
corrections purely in the shapes
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Figure 1: HT distribution after preselection, for data as well as for all standard model back-

grounds and two SUSY signal samples with parameter sets LM0 and LM1, normalized to an

integrated luminosity of 35 pb
−1

. The hatched area corresponds to the uncertainty in the SM

estimate as defined in Section 3.1. The SM distributions are only displayed for illustration

purposes, as they are the result of Monte Carlo simulation, while the actual estimate of the

background from SM processes in this search is based on data, as described in detail in Sec-

tion 4.

W + jets, Z → νν̄ + jets and tt̄ + jets events, which will be referred to collectively as the elec-

troweak (EWK) backgrounds in what follows, are simulated using MADGRAPH [32]. The SM

distribution, i.e. the sum of the QCD multijet and EWK distributions, is indicated in Fig. 1

as a hatched band representing the combined statistical and systematic uncertainties from the

jet energy scale and resolution. The expected HT distributions for two low-mass SUSY signal

points, LM0 and LM1, are overlaid. With the exception of tt̄, the SM processes fall off expo-

nentially over the entire HT range, whereas a broad peak at values of a few hundred of GeV

is expected for the signal models. The selection is tightened by requiring the HT of all jets to

exceed 350 GeV, thus ensuring large hadronic activity in the event. This requirement substan-

tially reduces the contributions from SM processes while maintaining a high efficiency for the

SUSY topologies considered.

3.2 Final event selection for SUSY search

Jet mismeasurements, caused by possible detection inefficiencies or by nonuniformities in the

calibration of the calorimeters, are the dominant source of large missing transverse energy E/T

in events from QCD multijet production. To control this background and to separate it from a

genuine missing energy signal, a variable that is robust against energy mismeasurements, αT,

is used. For events with two jets, αT, first introduced in Refs. [21, 33] and inspired by Ref. [34],

is defined as

αT = ET
j2 /MT,

where ET
j2 is the transverse energy of the less energetic of the two jets in the event and MT is

the transverse mass of the di-jet system, defined as



p19MSSM1A (14 TeV) 
Comparison between NLO and LO rescaled by global K-factor:
corrections purely in the shapes
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Figure 11: Differential distributions of benchmark point p19MSSM1 at a center of mass energy
√
S = 14.

In the upper part of the plots we show in black LO, in red NLO and in blue LO distributions rescaled by

the ratio KNLO between the integrated NLO and LO results. In the lower part of the plots NLO corrections

in the shapes are shown, defined as the full NLO divided by the rescaled LO ·KNLO distribution. From top

left to bottom right we show differential distributions in pT1 , p
T
2 , meff, "ET , HT (all in fb/GeV) and in αT

(in pba).
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Figure 11: Differential distributions of benchmark point p19MSSM1 at a center of mass energy
√
S = 14.

In the upper part of the plots we show in black LO, in red NLO and in blue LO distributions rescaled by

the ratio KNLO between the integrated NLO and LO results. In the lower part of the plots NLO corrections

in the shapes are shown, defined as the full NLO divided by the rescaled LO ·KNLO distribution. From top

left to bottom right we show differential distributions in pT1 , p
T
2 , meff, "ET , HT (all in fb/GeV) and in αT

(in pba).
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p19MSSM1 ũL ũR d̃L d̃R g̃ χ̃0

1

mass (GeV) 339.6 394.8 348.3 392.7 414.7 299.1

Table 3: On-shell masses of the squarks, the gluino, and the lightest neutralino within the different SUSY

scenarios considered. All masses are given in GeV.

dσ
(1)
pp→q̃q̃′(+X) = dσvirtual+soft

pp→q̃q̃′(g) + dσcoll
pp→q̃q̃′(g) + dσhard

pp→q̃q̃′g + dσreal-quark
pp→q̃q̃′ q̄(′)

dΓ(1)
q̃→qχ̃0

1
= dΓvirtual+soft

q̃→qχ̃0
1(g)

+ dΓcoll
q̃→qχ̃0

1(g)
+ dΓhard

q̃→qχ̃0
1g
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see also: Plehn, Rainwater, Skands ’07; 
Alwall, de Visscher, Maltoni ’08



Effect on cut-and-count searches performed by ATLAS.

5.3.3 Event rates

After investigating inclusive cross sections and differential distributions we now want to study
event rates, i.e., fractionally integrated differential distributions. In this way we want to quantify a
possible impact of our calculation on current searches for supersymmetry and future measurements
of event rates at the LHC.

In table 7 we list cross sections after applying cuts of eq. (5.4) and in table 8 cross sections after
applying cuts of eq. (5.5). We show LO and NLO cross sections for all three benchmark points and
all three energies together with resulting K-factors. For comparison we again list inclusive K-factors
of just production, already shown in table 5. From these results a fully differential description of
all squark and gluino channels including NLO effects in production and decay seems inevitable for
a conclusive interpretation of SUSY searches (or signals) at the LHC. For any study of compressed
spectra, like p19MSSM1, this seems to be eminent. Furthermore, as already suggested in [84] and
expected from the differential distributions shown in section 5.3.2, particularly interpretations based
on αT seem to be highly effected by higher order corrections.

benchmarkpoint Energy [TeV] N
(0)
ATLAS N

(0+1)
ATLAS KNATLAS Kpp→q̃q̃′

7 0.066pb 0.083pb 1.26 1.37
SPS1a 8 0.097pb 0.121pb 1.25 1.35

14 0.347pb 0.424pb 1.22 1.28

7 0.313 fb 0.503 fb 1.61 1.57
10.1.5 8 0.861 fb 1.344 fb 1.56 1.52

14 13.82 fb 19.77 fb 1.43 1.40

7 0.140 fb 20.76 fb ∼ 150 1.40
p19MSSM1 8 0.339 fb 37.96 fb ∼ 110 1.39

14 0.0044pb 0.264pb ∼ 60 1.34

Table 7: LO N (0)
ATLAS and NLO N (0+1)

ATLAS cross section predictions and K-factors KNATLAS for the three

benchmark scenarios SPS1a, 10.1.5, p19MSSM1 and center of mass energies
√
S = 7, 8, 14 TeV where the

cuts of eq. (5.4) are applied.

benchmarkpoint Energy [TeV] N
(0)
CMS N

(0+1)
CMS KNCMS Kpp→q̃q̃′

7 0.112pb 0.141pb 1.26 1.37
SPS1a 8 0.157pb 0.197pb 1.25 1.35

14 0.488pb 0.614pb 1.26 1.28

7 0.201pb 0.261pb 1.30 1.57
10.1.5 8 0.542 fb 0.674 fb 1.24 1.52

14 8.129 fb 8.884 fb 1.09 1.40

7 10−6 pb 0.095pb O(104) 1.40
p19MSSM1 8 10−6 pb 0.151pb O(104) 1.39

14 2 · 10−5 pb 0.687pb O(104) 1.34

Table 8: LO N (0)
ATLAS and NLO N (0+1)

ATLAS cross section predictions and K-factors KNATLAS for the three

benchmark scenarios SPS1a, 10.1.5, p19MSSM1 and center of mass energies
√
S = 7, 8, 14 TeV where the

cuts of eq. (5.5) are applied.

– 28 –

realistic prediction on the level of partonic jets 5. In general we use a jet radius of R = 0.4, as
in the SUSY searches performed by the ATLAS collaboration [?]. CMS instead uses a radius of
R = 0.5 [?]. We employ R = 0.5 in the distributions and signatures used by CMS (i.e. particularly
the αT distribution as described below). Although we did not perform a systematic study, our
results seem to be independent of this choice. After performing the jet clustering we sort the
partonic jets by their pT and in the following anaysis we keep only jets with

pTj1/2 > 20 GeV |ηj | < 2.8, (5.2)

pTji > 50 GeV |ηj | < 3.0 (for CMS observables) . (5.3)

Cuts of eq. (5.2) are used everywhere but in the observables used specifically by CMS (αT , as
defined below), where cuts of eq. (5.3) .

Before showing results for the experimental signature 2j+ !ET (+X), in section 5.3.1 we compare
values for NLO total cross sections of squark-squark production, without decay included, with
results obtained using Prospino 2. In section 5.3.2 we investigate the effect of NLO corrections,
for different benchmark points, on the following differential distributions:

• the transverse momentum of the two hardest jets pT1/2,

• the pseudorapidity of the two hardest jets η1/2,

• the missing transverse energy !ET ,

• the effective mass meff =
∑

i=1,2
pTi + !ET ,

• the scalar sum of the pT of all jets (visible after cuts of eq. (5.3)), HT =
∑

i=1,2(,3)

pTi ,

• the invariant mass of the two hardest jets minv(jj),

• the cosine of the angle between the two hardest jets cosΘjj , which depends on the spin of the
produced particles and therefore might help to distinguish SUSY from other BSM models [10],

• cos Θ̂ = tanh
(

∆ηjj

2

)

, ηjj = η1 − η2, introduced in [9] as a possible observable for early spin

determination at the LHC,

• the αT variable, first defined in [80], where for hard real radiation events with three jets and
pT3 > 50 GeV, these jets are reclustered into two pseudojets by minimizing the difference of
the respective HT of the two pseudojets, as explained in [81, 82]. Furthermore, in all αT

distributions we require HT > 350 GeV as in [?].

Searches for sparticle production performed by ATLAS are based on pT, !ET and meff cuts; CMS
instead uses αT to reduce SM backgrounds. In section 5.3.3 we examine NLO corrections in the
resulting event rates after cuts. Explicitly we employ the following cuts used by ATLAS,

pTj1 > 130 GeV, pTj2 > 40 GeV, |ηj1/2 | < 2.8, ∆φ(j1/2, $!ET ) > 0.4, (5.4)

meff > 1 TeV, !ET /meff > 0.3,

in their two-jet analysis. Here,∆φ(j1/2, $!ET ) denotes the angular seperation between the two hardest
jets and the direction of missing energy. Instead the CMS signal region is defined as

pTj1/2 > 100 GeV, |ηj1 | < 2.5, |ηj2 | < 3.0, (5.5)

HT > 350 GeV, !HT / !ET < 1.25, αT > 0.55,

5With the term partonic jets we mean that the jet-clustering-algorithm has been applied to events as produced
from our calculation. No QCD showering or hadronization is included in the simulation.
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Effect on cut-and-count searches performed by CMS.
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realistic prediction on the level of partonic jets 5. In general we use a jet radius of R = 0.4, as
in the SUSY searches performed by the ATLAS collaboration [?]. CMS instead uses a radius of
R = 0.5 [?]. We employ R = 0.5 in the distributions and signatures used by CMS (i.e. particularly
the αT distribution as described below). Although we did not perform a systematic study, our
results seem to be independent of this choice. After performing the jet clustering we sort the
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the respective HT of the two pseudojets, as explained in [81, 82]. Furthermore, in all αT

distributions we require HT > 350 GeV as in [?].

Searches for sparticle production performed by ATLAS are based on pT, !ET and meff cuts; CMS
instead uses αT to reduce SM backgrounds. In section 5.3.3 we examine NLO corrections in the
resulting event rates after cuts. Explicitly we employ the following cuts used by ATLAS,

pTj1 > 130 GeV, pTj2 > 40 GeV, |ηj1/2 | < 2.8, ∆φ(j1/2, $!ET ) > 0.4, (5.4)
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in their two-jet analysis. Here,∆φ(j1/2, $!ET ) denotes the angular seperation between the two hardest
jets and the direction of missing energy. Instead the CMS signal region is defined as

pTj1/2 > 100 GeV, |ηj1 | < 2.5, |ηj2 | < 3.0, (5.5)

HT > 350 GeV, !HT / !ET < 1.25, αT > 0.55,

5With the term partonic jets we mean that the jet-clustering-algorithm has been applied to events as produced
from our calculation. No QCD showering or hadronization is included in the simulation.
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CONCLUSION
We provide a consistent fully differential calculation of factorizable NLO 
QCD corrections in NWA for squark-squark production and decay.

Thank you for your attention.

These NLO corrections are important for precise description of physical 
observables and thus for setting accurate limits and even more for future  
parameter determination. 

Fully differential NLO QCD predictions of combined production and 
decay for all squark/gluino channels are desirable (matched to a NLO PS). 

In particular cases they can be essential for a realistic description.

Study of further experimental signatures (monojets, attached EW decay 
chains) under way. 

OUTLOOK

Study of off-shell and non-factorizable NLO effects also under way.



CMSSM 10.1.5 (14 TeV) 
Comparison between NLO and LO rescaled by global K-factor

SPS1a ũL ũR d̃L d̃R g̃ χ̃0
1

mass (GeV) 563.6 546.7 569.0 546.6 608.5 97.0

Table 1: On-shell masses of the squarks, the gluino, and the lightest neutralino within the different SUSY

scenarios considered. All masses are given in GeV.

10.1.5 ũL ũR d̃L d̃R g̃ χ̃0
1

mass (GeV) 1437.7 1382.3 1439.7 1376.9 1568.6 291.3

Table 2: On-shell masses of the squarks, the gluino, and the lightest neutralino within the different SUSY

scenarios considered. All masses are given in GeV.

We present the analysis of the signature jj+ �ET (+X) via squark–squark production and direct
decay into the lightest neutralino, pp → q̃q̃� → jjχ̃0

1χ̃
0
1(+X), in next-to-leading order QCD within

the framework of the minimal supersymmetric Standard Model.
We provide a consistent, fully differential calculation of NLO QCD factorizable corrections to the
given processes with on-shell squarks.
Clustering final states into partonic jets, we investigate the experimental inclusive signature jj +
�ET and we choose for illustration several benchmark scenarios. We compare resulting differential
distributions with leading-order approximation rescaled by a flat K-factor and examine a possible
impact for cut-and-count searches for supersymmetry at the LHC.
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CMSSM 10.1.5 (14 TeV) 
Comparison between NLO and LO rescaled by global K-factor:
corrections purely in the shapes
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Comparison between NLO and LO rescaled by global K-factor

SPS1a ũL ũR d̃L d̃R g̃ χ̃0
1

mass (GeV) 563.6 546.7 569.0 546.6 608.5 97.0

Table 1: On-shell masses of the squarks, the gluino, and the lightest neutralino within the different SUSY

scenarios considered. All masses are given in GeV.
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CMSSM 10.1.5 (14 TeV) 
Comparison between NLO and LO rescaled by global K-factor:
corrections purely in the shapes
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Figure 10: Differential distributions of benchmark point 10.1.5 at a center of mass energy
√
S = 14. In

the upper part of the plots we show in black LO, in red NLO and in blue LO distributions rescaled by the

ratio KNLO between the integrated NLO and LO results. In the lower part of the plots NLO corrections in

the shapes are shown, defined as the full NLO divided by the rescaled LO · KNLO distribution. From top

left to bottom right we show differential distributions in pT1 , p
T
2 , meff, "ET , HT (all in fb/GeV) and in αT

(in pba).
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Figure 9: Differential distributions of benchmark point SPS1a at a center of mass energy
√
S = 14. In

the upper part of the plots we show in black LO, in red NLO and in blue LO distributions rescaled by the

ratio KNLO between the integrated NLO and LO results. In the lower part of the plots NLO corrections in

the shapes are shown, defined as the full NLO divided by the rescaled LO · KNLO distribution. From top

left to bottom right we show differential distributions in pT1 , p
T
2 , meff, "ET , HT (all in fb/GeV) and in αT

(in pb).
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Figure 11: Differential distributions of benchmark point p19MSSM1 at a center of mass energy
√
S = 14.

In the upper part of the plots we show in black LO, in red NLO and in blue LO distributions rescaled by

the ratio KNLO between the integrated NLO and LO results. In the lower part of the plots NLO corrections

in the shapes are shown, defined as the full NLO divided by the rescaled LO ·KNLO distribution. From top

left to bottom right we show differential distributions in pT1 , p
T
2 , meff, "ET , HT (all in fb/GeV) and in αT

(in pba).
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p19MSSM1A (14 TeV) 
Comparison between NLO and LO rescaled by global K-factor:
corrections purely in the shapes
p19MSSM1 ũL ũR d̃L d̃R g̃ χ̃0

1

mass (GeV) 339.6 394.8 348.3 392.7 414.7 299.1

Table 3: On-shell masses of the squarks, the gluino, and the lightest neutralino within the different SUSY

scenarios considered. All masses are given in GeV.

dσ
(1)
pp→q̃q̃′(+X) = dσvirtual+soft

pp→q̃q̃′(g) + dσcoll
pp→q̃q̃′(g) + dσhard

pp→q̃q̃′g + dσreal-quark
pp→q̃q̃′ q̄(′)

dΓ(1)
q̃→qχ̃0

1
= dΓvirtual+soft

q̃→qχ̃0
1(g)

+ dΓcoll
q̃→qχ̃0

1(g)
+ dΓhard

q̃→qχ̃0
1g
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3.2 Final event selection for SUSY search 3
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Figure 1: HT distribution after preselection, for data as well as for all standard model back-

grounds and two SUSY signal samples with parameter sets LM0 and LM1, normalized to an

integrated luminosity of 35 pb
−1

. The hatched area corresponds to the uncertainty in the SM

estimate as defined in Section 3.1. The SM distributions are only displayed for illustration

purposes, as they are the result of Monte Carlo simulation, while the actual estimate of the

background from SM processes in this search is based on data, as described in detail in Sec-

tion 4.

W + jets, Z → νν̄ + jets and tt̄ + jets events, which will be referred to collectively as the elec-

troweak (EWK) backgrounds in what follows, are simulated using MADGRAPH [32]. The SM

distribution, i.e. the sum of the QCD multijet and EWK distributions, is indicated in Fig. 1

as a hatched band representing the combined statistical and systematic uncertainties from the

jet energy scale and resolution. The expected HT distributions for two low-mass SUSY signal

points, LM0 and LM1, are overlaid. With the exception of tt̄, the SM processes fall off expo-

nentially over the entire HT range, whereas a broad peak at values of a few hundred of GeV

is expected for the signal models. The selection is tightened by requiring the HT of all jets to

exceed 350 GeV, thus ensuring large hadronic activity in the event. This requirement substan-

tially reduces the contributions from SM processes while maintaining a high efficiency for the

SUSY topologies considered.

3.2 Final event selection for SUSY search

Jet mismeasurements, caused by possible detection inefficiencies or by nonuniformities in the

calibration of the calorimeters, are the dominant source of large missing transverse energy E/T

in events from QCD multijet production. To control this background and to separate it from a

genuine missing energy signal, a variable that is robust against energy mismeasurements, αT,

is used. For events with two jets, αT, first introduced in Refs. [21, 33] and inspired by Ref. [34],

is defined as

αT = ET
j2 /MT,

where ET
j2 is the transverse energy of the less energetic of the two jets in the event and MT is

the transverse mass of the di-jet system, defined as



Real quark radiation

non-resonant resonant

Γg̃

“Prospino scheme” changes

and usually:             numerically.       

[Binoth et. al.; ’11]

Γ → 0

p19MSSM1 ũL ũR d̃L d̃R g̃ χ̃0

1

mass (GeV) 339.6 394.8 348.3 392.7 414.7 299.1

Table 3: On-shell masses of the squarks, the gluino, and the lightest neutralino within the different SUSY

scenarios considered. All masses are given in GeV.

dσ
(1)
pp→q̃q̃′(+X) = dσvirtual+soft

pp→q̃q̃′(g) + dσcoll
pp→q̃q̃′(g) + dσhard
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