Linear Collider Detectors & Physics

Frank Simon Max-Planck-Institut für Physik Munich, Germany

The Group

The Core Group

- Post-Doc
 Katja Seidel (04/2012 10/2012)
- PhD Students

funded by Excellence Cluster

Veronika Chobanova (still working on Belle analysis) Katja Seidel (until 03/2012), Christian Soldner, Michal Tesar, Lars Weuste

- Diploma/Master Student
 Marco Szalay
- Scientist
 Ron Settles
- Group Leader
 Frank Simon

- Close collaboration with:
 - Belle / Belle-II
 Jeremy Dalseno, Andreas Moll,
 Kolja Prothmann; Student supervision:
 Christian Kiesling
 - HLL & Minerva Group Jelena Ninkovic, Christian Jendrysek, Laci Andricek, Hans-Günther Moser
 - And the technical departments!

The Context: A Linear e⁺e⁻ Collider

- The Physics Menu:
 - Full exploration of the Higgs sector (aka the "New Boson" discovered at LHC)
 - Precision measurements within the Standard Model:
 - Top physics
 - Gauge bosons for example WW production, scattering
 - Potentially precision measurements at the Z pole ("Giga-Z")
 - Search for and spectroscopy of New Physics
 - Particular strength in the weak sector
 - Indirect sensitivity to very high scales in the 10 TeV region and above
- Highly complementary to the LHC
 - Increased precision due to well-defined initial state
 - Improved access to weak sector due to substantially more favorable background conditions

One Example: Higgs Physics at a Linear Collider

- A full Higgs program spans a wide energy range
 - 250 GeV 350 GeV: Model-independent measurement of couplings
 - 500+ GeV: Total width, top-H coupling
 - 500+ GeV; 1+ TeV: Higgs self-coupling
 - 1+ TeV: Access to very small BRs with high statistics

Future Detectors

Two Accelerator Concepts

- Large dynamic range in energy through staged construction
- Two technologies many common issues, collaboration on many aspects
 - In particular also common work on physics & detectors

Future Detectors

Physics Studies

- For CLIC CDR and ILC TDR / ILD DBD: Full simulation studies
 - Last year: Top invariant mass & TeV-scale squarks at CLIC
 - This year: Top threshold scan at CLIC & ILC, top invariant mass for ILC in progress
- Top threshold scan: A cross section measurement Provides sensitivity to the top mass and strong coupling in a theoretically well-defined way
- The ultimate in precision for the top mass!

Future Detectors

Top Threshold at Linear Colliders

• Simultaneous fit of top mass (1S scheme) and α_s template fit of background-subtracted cross section with different mass and coupling hypotheses

with 100 fb⁻¹ (10 fb⁻¹ per point): **27 MeV** stat. error on **mass**, **0.0008** stat. error on α_s (m_t alone: 18 MeV stat error, 17 MeV syst. uncertainty from current WA α_s)

With CLIC luminosity spectrum: \sim 25% larger uncertainty on mass, \sim 15% larger uncertainty on α_s

• Several systematic effects have been studied:

Theory uncertainty: Overall cross-section normalization (1% & 3% uncertainty) 5 MeV / 8 MeV on mass 0.0008 / 0.0022 on α_s (also sets the scale for efficiency uncertainties)

• Several systematic effects have been studied:

- Theory uncertainty: Overall cross-section normalization (1% & 3% uncertainty) 5 MeV / 8 MeV on mass 0.0008 / 0.0022 on α_s (also sets the scale for efficiency uncertainties)
- Background normalization: Change of subtracted background by +- 5%
 18 MeV on mass
 0.0007 on α_s

• Several systematic effects have been studied:

- Theory uncertainty: Overall cross-section normalization (1% & 3% uncertainty)
 5 MeV / 8 MeV on mass
 0.0008 / 0.0022 on α_s
 (also sets the scale for efficiency uncertainties)
 Background normalization: Change of
- subtracted background by +- 5% 18 MeV on mass 0.0007 on α_s
- In addition: Machine center-of-mass energy, expected to be known at the 10⁻⁴ level from LEP experience and ILC studies: O 20 MeV on mass
- Precision of luminosity spectrum -> width of main peak matters most!
 - Precision of measurement currently unknown, 20% uncertainty on RMS results in 75 MeV uncertainty of m_t

Future Detectors MPP Project Review, December 2012

- Several systematic effects have been studied:
- Theory uncertainty: Overall cross-section cross-section [pb] tī threshold - 1s mass 174.0 GeV 8.0 normalization (1% & 3% uncertainty) TOPPIK NNLO + CLIC350 BS + ISR 5 MeV / 8 MeV on mass I simulated data: 10 fb⁻¹/point 0.6 top mass ± 200 MeV es) Overall: Total error of top mass in a theoretically well-defined mass definition below **100 MeV** achievable, independent of accelerator concept. • In addition: Machine center-of-mass energy, expected to be known at the 10⁻⁴ level
 - from LEP experience and ILC studies: O 20 MeV on mass
 - Precision of luminosity spectrum -> width of main peak matters most!
 - Precision of measurement currently unknown, 20% uncertainty on RMS results in 75 MeV uncertainty of m_t

Precision Physics needs Precise Detectors

Detectors based on particle flow event reconstruction

- Precision tracking
- Highly granular calorimeters (electromagnetic & hadronic)
 to separate particle showers in jets - 10s of Millions of Channels!

Group activities:

- Development of highly granular hadronic calorimeters (CALICE collaboration)
- Contributions to TPC development (LCTPC collaboration)

Future Detectors MPP Project Review, December 2012

Readout Technology for Hadron Calorimeters

- Scintillator with SiPM readout (without wavelength-shifting fibers)
 - Precise characterization of SiPMs (fill-factor, uniformity, ...)
 - Investigation of mass-produced scintillator tiles

First prototypes of injection-molded tiles based on MPP design, fabricated at ITEP, are available

Detailed scans with 90 Sr to measure inter-tile gap: 165 µm thick dead zone due to chemical matting, in total ~400 µm inactive gap between tiles => Meets expectations

Exploring Hadronic Showers

• Hadronic showers have a complex structure - also in time!

instantaneous, detected via energy loss of electrons and positrons in active medium

instantaneous component: charged hadrons detected via energy loss of charged hadrons in active medium

delayed component: photons, neutrons, protons from nuclear de-excitation following neutron capture, momentum transfer to protons in hydrogenous active medium from slow neutrons

- The time structure in granular calorimeters is highly relevant
 - influence on shower separation with PFAs depending on shower timing capability
 - impact on background rejection at CLIC: 0.5 ns between bunch crossings
 - particularly interesting in tungsten: heavy nucleus, so far little data

Future Detectors MPP Project Review, December 2012

T3B and FastRPC - Timing in Imaging HCALs

- 15 cells (3 x 3 cm² each) with sub-ns sampling, 2.4 µs acquisition window
 - Scintillator tiles analog HCAL measurements in tungsten and steel
 - RPCs digital HCAL measurements in tungsten

- T3B took data with CALICE WAHCAL in 2010 at PS and 2011 at SPS, with CALICE steel SDHCAL in 2011 at SPS
- FastRPC took data with CALICE WDHCAL in 2012 at SPS

Shower Physics - Expectations

EM

- Sensitivity to a wide range of particles within hadronic shower
 - RPCs blind to n elastic -> interesting cross-check !

Neutron elastic

HAD (rel.)

Neutron imelastic

- Late components predominantly related to neutrons, in particular n-capture
- Neutron capture
 Expect wide spatial distribution: Shower halo most sensitive to time structure, core dominated by prompt relativistic particles

EM

HAD (rel.)

Neutions

11/1

Results with Scintillators - Global

Results with Scintillators - Radial Time Profile

- Late energy deposits are more important in the outer regions of a shower
 - More pronounced effect in tungsten than in steel

Results with Scintillators - Radial Time Profile

- Late energy deposits are more important in the outer regions of a shower
 - More pronounced effect in tungsten than in steel
 - In steel: Good description by Geant4 (on the level of a few 100 ps)
 - In tungsten: Neutrons are of key importance only QGSP_BERT_HP and QBBC Geant4 models provide a good prediction

Future Detectors

Early Results with RPCs

- Identification of hits in RPC: Amplitude differences in muons and hadrons point to high-density em showers
- Late energy deposits visible in pions compared to muons: The T3B principle also works for RPCs!

Adding a 4th Dimension: Depth

• Correlation of T3B and WAHCAL events provides a powerful addition:

- Event-by-event measurement of the depth of T3B relative to the shower start
- By combining large data samples, the average time structure of hadronic showers can be measured over a depth of 5 λ_l

▶ 4D shower images with unprecedented granularity

T = 0: Activity maximum in layer 39 (rear of calorimeter) Shown: First hits in each cell only

Future Detectors

T = 0: Activity maximum in layer 39 (rear of calorimeter) Shown: First hits in each cell only

Future Detectors

T = 0: Activity maximum in layer 39 (rear of calorimeter) Shown: First hits in each cell only

T = 0: Activity maximum in layer 39 (rear of calorimeter) Shown: First hits in each cell only

Future Detectors

T = 0: Activity maximum in layer 39 (rear of calorimeter) Shown: First hits in each cell only

Future Detectors

T = 0: Activity maximum in layer 39 (rear of calorimeter) Shown: First hits in each cell only

Future Detectors

T = 0: Activity maximum in layer 39 (rear of calorimeter) Shown: First hits in each cell only

Future Detectors

T = 0: Activity maximum in layer 39 (rear of calorimeter) Shown: First hits in each cell only

Future Detectors

T = 0: Activity maximum in layer 39 (rear of calorimeter) Shown: First hits in each cell only

Future Detectors

T = 0: Activity maximum in layer 39 (rear of calorimeter) Shown: First hits in each cell only

Future Detectors

T = 0: Activity maximum in layer 39 (rear of calorimeter) Shown: First hits in each cell only

Future Detectors

T = 0: Activity maximum in layer 39 (rear of calorimeter) Shown: First hits in each cell only

Future Detectors

Conclusions

- The discovery of the Higgs (like) particle at the LHC has further intensified the interest in a Linear Collider
- The MPP plays a very visible role in this effort
 - Editor and main editor roles for the CLIC CDR
 - Editor roles for the ILD DBD (part of ILC TDR)
 - Major contributions to physics studies for ILC & CLIC
 - Detector development for LC Experiments
 - Imaging calorimetry: Development of scintillator & SiPM readout options, advanced energy reconstruction algorithms, study of substructure of hadronic showers - space and time
 - Time projection chamber Contributions to prototype R&D
 - Pixel detectors: DEPFET for Belle-II also promotes technology for a Linear Collider

What's ahead

- The R&D will continue:
 - Next-generation prototype of CALICE AHCAL, with fully embedded electronics to demonstrate the full technology chain on the system level
 - Will include scintillator cells based on design developed at MPP

- Investigate use of scintillator technology for a (more) cost-effective ECAL, potentially finer-segmented HCAL
- Participate in comprehensive study of physics potential for Higgs sector

What's ahead

- The R&D will continue:
 - Next-generation prototype of CALICE AHCAL, with fully embedded electronics to demonstrate the full technology chain on the system level
 - Will include scintillator cells based on design developed at MPP

- Investigate use of scintillator technology for a (more) cost-effective ECAL, potentially finer-segmented HCAL
- Participate in comprehensive study of physics potential for Higgs sector
 - The prospects for the realization of a Linear Collider:
 - No firm decision yet Strategy update processes ongoing in Europe and US
 - Strong expression of interest by Japanese community

Backup

Future Detectors MPP Project Review, December 2012

Frank Simon (fsimon@mpp.mpg.de)

Possible ILC Timeline

Future Detectors

Towards a Realization of CLIC

2012-16 Development Phase

Develop a Project Plan for a staged implementation in agreement with LHC findings; further technical developments with industry, performance studies for accelerator parts and systems, as well as for detectors.

2016-17 Decisions

On the basis of LHC data and Project Plans (for CLIC and other potential projects), take decisions about next project(s) at the Energy Frontier.

2017-22 Preparation Phase

Finalise implementation parameters, Drive Beam Facility and other system verifications, site authorisation and preparation for industrial procurement.

Prepare detailed Technical Proposals for the detector-systems.

2022-23 Construction Start

Ready for full construction and main tunnel excavation.

2023-2030 Construction Phase

Stage 1 construction of a 500 GeV CLIC, in parallel with detector construction.

Preparation for implementation of further stages.

2030 Commissioning

From 2030, becoming ready for data-taking as the LHC programme reaches completion.

Future Detectors

Luminosity Spectrum

Future Detectors

MPP Project Review, December 2012

Frank Simon (fsimon@mpp.mpg.de)

T3B Readout

• SiPM mounted to high band-width preamplifier (x8.9 amplification)

- Each channel read out with PicoScope PS6403
 - 1.25 GS/s
 - 2.4 µs acquisition window
 - max. trigger rate > 100 kHz

Future Detectors MPP Project Review, December 2012

Future Detectors MPP Project Review, December 2012

Frank Simon (fsimon@mpp.mpg.de)

Data Reconstruction

- Full waveform recorded for each channel
- Individual photon arrival times (and total amplitude) determined by iteratively subtracting 1 p.e. signals

 NB: Substantial initial cost for components used at all energies, from the start planned for up to 3 TeV final energy

Power

Table 5.1: Nominal power and efficiency for staging scenarios A and B, where $W_{main \ beam}$ is for the two main beams.

Staging scenario	\sqrt{s} (TeV)	$\mathscr{L}_{1\%} (\mathrm{cm}^{-2}\mathrm{s}^{-1})$	Wmain beam (MW)	$P_{electric}$ (MW)	Efficiency (%)
	0.5	$1.4 \cdot 10^{34}$	9.6	272	3.6
А	1.4	$1.3 \cdot 10^{34}$	12.9	364	3.6
	3.0	$2.0 \cdot 10^{34}$	27.7	589	4.7
	0.5	$7.0 \cdot 10^{33}$	4.6	235	2.0
В	1.5	$1.4 \cdot 10^{34}$	13.9	364	3.8
	3.0	$2.0 \cdot 10^{34}$	27.7	589	4.7

Table 5.2: Residual power without beams for staging scenarios A and B.

Staging scenario	\sqrt{s} (TeV)	Pwaiting for beam (MW)	Pshutdown (MW)
	0.5	168	37
A	1.4	190	42
	3.0	268	58
	0.5	167	35
В	1.5	190	42
	3.0	268	58

