

GERDA status report

OUTLINE: •Motivation: Neutrinoless Double Beta Decay •Phase I data taking •Hardware preparations for phase II •Active background rejection in GERDA •New detectors for GERDA phase II

GERDA group at MPI für Physik:

Postdocs:	Fabiana Cossavella, Oliver Schulz Chris O'Shaugnessy (until Oct. 2012)
PhD students:	Heng-Ye Liao, Neslihan Becerici-Schmidt, Oleksander Volynets (until Sept. 2012),
Diploma student:	Aaron Michel
Engineers/Technicians:	Hans Seitz, Franz Stelzer (until April 2012) Margus Härk (Jul. – Nov. 2012)
Group leader GERDA:	Béla Majorovits
Director:	Allen Caldwell

Many thanks to the technical departments! Especially to: T. Haubold, R. Sedlmayer, D. Wamsler A. Wimmer, G. Winkelmüller, S. Vogt

GERDA

Detection principle:

Use Detector made of double beta emitting material:

HP⁷⁶Ge detector

•High detection efficiency (source = detector)

•Very good energy resolution (0.2% at RoI)

The GERDA Collaboration

$\Delta_p \cdot \Delta_q \ge \frac{1}{2} t$

The GERDA Experiment

The GERDA Experiment

Finished infrastructure in 2009 First data taking started in May 2010 Deployed all enriched detectors in Nov. 2011

detector	total mass	active mass	⁷⁶ Ge isotopic
	(g)	(g)	abundance ($\%$
ANG2	2833	$2468 \pm 121 \pm 89$	86.6 ± 2.5
ANG3	2391	$2070{\pm}118{\pm}77$	88.3 ± 2.6
ANG4	2372	$2136{\pm}116{\pm}79$	86.3 ± 1.3
ANG5	2746	$2281{\pm}109{\pm}82$	85.6 ± 1.3
RG1	2110	$1908 {\pm} 109 {\pm} 72$	85.5 ± 2.0
RG2	2166	$1800{\pm}99{\pm}65$	85.5 ± 2.0

Two detectors switched off due to leakage current.

→ Total detector mass: 14.6 kg

Duty Cycles and Exposure

Exposure now: ca. 12.5 kg y

Stability of detector performance:

Energy resolution and calibration are stable since months

Background data for enriched detectors (red) and control detectors with natural germanium abundance (blue):

Count rates in observed gamma lines:

		$^{nat}Ge (3.17 kg \cdot yr)$		$^{\rm enr}{ m Ge}$ (6.10 kg·yr)		HDM $(71.7 \text{ kg} \cdot \text{yr})$
isotope	energy	tot/bck	rate	tot/bck	rate	rate
	[keV]	[cts]	$[cts/(kg \cdot yr)]$	[cts]	$[cts/(kg \cdot yr)]$	$[cts/(kg\cdot yr)]$
$^{40}\mathrm{K}$	1460.8	85 / 15	$21.7^{+3.4}_{-3.0}$	125 / 42	$13.5^{+2.2}_{-2.1}$	181 ± 2
60 Co	1173.2	43 / 38	< 5.8	182 / 152	$4.8^{+2.8}_{-2.8}$	55 ± 1
	1332.3	31 / 33	< 3.8	93 / 101	< 3.1	51 ± 1
^{137}Cs	661.6	46 / 62	< 3.2	335 / 348	< 5.9	282 ± 2
$^{228}\mathrm{Ac}$	910.8	54 / 38	$5.1^{+2.8}_{-2.9}$	294 / 303	< 5.8	29.8 ± 1.6
²⁰⁸ Tl	$968.9 \\ 583.2$	$64 \ / \ 42 \\ 56 \ / \ 51$	$6.9^{+3.2}_{-3.2}$ < 6.5	$247 \ / \ 230$ $333 \ / \ 327$	$2.7^{+2.8}_{-2.5}$ < 7.6	$17.6 \pm 1.1 \\ 36 \pm 3$
	2614.5	9 / 2	$2.1^{+1.1}_{-1.1}$	10 / 0	$1.5^{+0.6}_{-0.5}$	16.5 ± 0.5
$^{214}\mathrm{Pb}$	352	$740 \ / \ 630$	$34.1^{+12.4}_{-11.0}$	1770 / 1688	$12.5^{+9.5}_{-7.7}$	138.7 ± 4.8
$^{214}\mathrm{Bi}$	609.3	99 / 51	$15.1^{+3.9}_{-3.9}$	351 / 311	$6.8^{+3.7}_{-4.1}$	105 ± 1
	1120.3	71 / 44	$8.4^{+3.5}_{-3.3}$	194 / 186	< 6.1	26.9 ± 1.2
	1764.5	23 / 5	$5.4^{+1.9}_{-1.5}$	24 / 1	$3.6^{+0.9}_{-0.8}$	30.7 ± 0.7
	2204.2	5 / 2	$0.8^{+0.8}_{-0.7}$	6 / 3	$0.4^{+0.4}_{-0.4}$	8.1 ± 0.5

→ All background components reduced by factor >~10 with respect to HdM

experiment	diodes	ΔE	exposure	background index
diode environment		(keV)	$(kg \cdot yr)$	10^{-2} cts/(keV·kg·yr)
IGEX [1]				
vacuum, Cu enclosed	enr	2000-2500	4.7	26
HDM [2]				
vacuum, Cu enclosed	enr	2000-2100	56.7	16
Gerda commissioning				
LAr	\mathbf{nat}	1839-2239	0.6	18 ± 3
LAr, Cu mini-shroud	\mathbf{nat}	1839-2239	2.6	5.9 ± 0.7
dto	enr	1839-2239	0.7	$4.3^{+1.4}_{-1.2}$
Gerda Phase I				
LAr, Cu mini-shroud	\mathbf{nat}	$1839-2239^{\star}$	1.2	$3.5\substack{+1.0 \\ -0.9}$
LAr (diodes AC-coupled)	\mathbf{nat}	1839 - 2239 *	1.9	$6.0^{+1.0}_{-0.9}$
LAr, Cu mini-shroud	enr	$1939-2139^{\star}$	6.1	$2.0^{+0.6}_{-0.4}$

*) excluding the blinded region of $Q_{\beta\beta} \pm 20 \text{ keV}$

Background index in energy RoI for enriched detectors: (2.0^{+0.6}_{-0.4}) · 10⁻² cts/(kg yr keV) (all stable runs, no PSA)

GERDA technical publication submitted to EPJ A

Ap. Ag > ± t

Background in GERDA:

High energy spectrum reveals alpha contamination on detector surface

GERDA

Peak at 5.2 MeV on detector surface Contamination different for each detector → Surface treatment

Event rate in 5.2 MeV peak as function of time is consistent with decay of 210 Po (T_{1/2}=138 days) on detector surface

Simulations suggest: Tail of α-peak at energy ROI contributes ~5% to background

GERDA

B. Majorovits

New measurement of 2vββ half life:

Signal to background ratio increased by factor of ~10 with respect to Heidelberg-**Moscow experiment Dominant background** components between 600 keV and 1600 keV: ⁴⁰K, ⁴²K, ²¹⁴Bi, ²²⁸Th $T_{1/2} = (1.84^{+0.14}_{-0.10}) \cdot 10^{21} \text{ yr}$ submitted for publication in J. Phys. G.

arXiv:1212.3210

Background decomposition is focus of PhD thesis of N. Becerici-Schmidt Investigation of PSA by ANN done by F. Cossavella & O. Volynets 15

GERDA phase I sensitivity curve:

Detectors for phase II: BEGe detectors for improved background recognition

- → Very pronounced pulse shape structures for individual energy deposits
- → Improved multi site recognition efficiency by A/E parameter

→ Significant background reduction possible dependent on and position of contamination

Logistics of detector production: The voyage of the enriched germanium

18

Logistics of detector production:

60

40

30

20

10

Tracking of exposure to above ground cosmic rays:

Prediction of background contribution due to cosmogenic activation for each detector available

Logistics has been organized and controlled by Ch. O'Shaughnessy

Investigation of shielding powers of container materials done for diploma thesis of A. Michel

GERDA

Phase II detectors in GERDA:

5 BEGes deployed into GERDA cryostat in Sept. 2012

3.6 kg of additional enriched detector material in GERDA Significantly better energy resolution Improved background recognition efficiency Presently in learning phase

Investigation of PSA properties subject of PhD thesis of H.Y. Liao

Phase II detectors in GERDA:

Produced 30 BEGes with total mass 20.8 kg

Presently 29 of 30 working within specifications

Energy resolution < 3.0keV at 2.6 MeV

Characterization being presently performed at HADES Site in Belgium

Measurement	Equipment
Leakage Current	Continuously / USB loggers
HV Scans	Co60 Source (fixed)
Energy Resolution	Co60 Source (fixed)
Stability	Co60 Source (fixed)
Surface Scans	Am241 (scanning)
Dead Layer / Active Volume	Am241, Ba133, Co60, Th228 (fixed)
Pulse Shape Properties	Am241 (scanning) / Th228 (fixed)

Ap. Dg>tt

GERDA LAr instrumentation:

Background rejection by detection of LAr scintillation light

24

GERDA LAr instrumentation: Background rejection by detection of LAr scintillation light Two solutions (supported by MC with light tracking):

GERDA

B. Majorovits

Phase II Hardware:

Infrastructure for phase II upgrade on the way:

Infrastructure for phase II upgrade on the way: Lock cylinder available Inner mechanics partly machined New holder structures being produced and tested LAr readout being constructed → Upgrade scheduled for 2013 Inner mechanics partly available

Phase II Sensitivity:

SUMMARY:

- We do not understand Neutrinos yet
 - 0vββ-decay might help
- GERDA phase I background is close to design goal
- GERDA phase II: more mass with "intelligent detectors"
 - 29 of 30 BEGes are available
- GERDA PhaseII hardware upgrade planned for next year

GERDA : Status and plans for phase II GERDA Sensitivity

GERDA

B. Majorovits

Plans for phase II: new detectors Background recognition powers of BEGes

Identify surface events:

Andrewitt

Plans for phase II: new detectors Background recognition powers of BEGes

New measurement of 2vbb half life:

