On predictions from spontaneously broken flavor symmetries

Christian Staudt

Technical University Munich

Particle Physics School Munich Colloquium, November 9, 2012

Based on: M.-C. Chen, M. Fallbacher, M. Ratz, C. S., Phys. Lett. **B** (2012), [arXiv: 1208.2947]

Neutrinos have mass

Missing solar neutrinos at the Subury Neutrino detector in the 1960s.

nasa.gov

Neutrinos oscillate, therefore, they have mass.

Open questions:

- origin of neutrino masses,
- mixing pattern
 i.e. flavor structure.

Neutrinos have mass

Missing solar neutrinos at the Subury Neutrino detector in the 1960s.

nasa.gov

Neutrinos oscillate, therefore, they have mass.

Flavor symmetries

Explain mixing patterns of neutrinos and might be window to new physics.

2 Supersymmetric flavor model building

- 3 Corrections from the Kähler potential
- Interpretation and Outlook

Neutrino oscillations

• Neutrinos get mass through higher dimensional operators, seesaw-mechanism ...

therookiecynic.wordpress.com

 Cannot diagonalize neutrino mass matrix and charged lepton Yukawa matrix simultaneously:

$$V_{
u,L}^{T} m_{
u} V_{
u,L} = diag(m_1, m_2, m_3)$$

 $V_{e,R}^{\dagger} m_e V_{e,L} = diag(m_e, m_{\mu}, m_{ au})$

$$oldsymbol{U}_{ extsf{MNS}} = oldsymbol{V}_{e,L}^\dagger oldsymbol{V}_{
u,L}$$

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

Parametrization of the mixing matrix

The mixing matrix can be described in standard parametrization, where $c_{xy} \equiv \cos(\theta_{xy})$ and $s_{xy} \equiv \sin(\theta_{xy})$.

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13} e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13} e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} e^{i\alpha_1/2} & 0 & 0 \\ 0 & e^{i\alpha_2/2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- Three mixing angles θ_{23} , θ_{13} and θ_{12} .
- One CP–violating Dirac phase δ and two Majorana phases $lpha_{1,2}$.

Known experimentally:

- existence (size) of mixing angles.
- two mass differences $\Delta m_{12}^2, \Delta m_{23}^2$.

Experimental results for the mixing angles

For early results, tri-bi-maximal mixing (TBM) seemed to be a good fit. Harrison et al. [2002]

		θ_{12}	θ_{23}	θ_{13}
Data	2005	$\left(34.0^{+1.3}_{-1.6} ight)^{\circ}$	> 35.8°	$\left(6.5^{+2.7}_{-6.5}\right)^{\circ}$

Experimental results for the mixing angles

For early results, tri-bi-maximal mixing (TBM) seemed to be a good fit. Harrison et al. [2002]

		θ_{12}	θ_{23}	θ_{13}
Data	2005	$\left(34.0^{+1.3}_{-1.6} ight)^{\circ}$	> 35.8°	$\left(6.5^{+2.7}_{-6.5}\right)^{\circ}$
	2012	$\left(33.6^{+1.0}_{-1.0}\right)^{\circ}$	$\left(38.4^{+1.4}_{-1.2}\right)^{\circ}$	$\left(8.93^{+1.1}_{-1.0}\right)^{\circ} \neq 0$

Beringer et al. [2012] , Fogli et al. [2012]

christian.staudt@tum.de (TUM)

Broken Flavor Symmetries

PPSM 09/11/2012 6 / 22

Supersymmetric flavor model building

The general idea:

- Horizontal symmetries relating different families with each other.
- Lepton and quark mixing patterns arise from flavor symmetry G_F.
 G_F can be continuous (U(1), SU(2) ...) or discrete (A₄, T', S₃, S₄...).
- Assign MSSM fields irreducible representations under G_F and introduce SM singlets in non-trivial G_F representations ⇒ 'flavons'.

Mixing pattern

 $\label{eq:spontaneously break G_F} \begin{array}{l} \mbox{Spontaneously break G_F by assigning VEVs to flavon fields:} \\ \mbox{``Correct'' VEV alignment} \Rightarrow \mbox{desired mixing pattern.} \end{array}$

Supersymmetric flavor model building

The general idea:

- Horizontal symmetries relating different families with each other.
- Lepton and quark mixing patterns arise from flavor symmetry G_F . G_F can be continuous (U(1), SU(2) ...) or discrete (A₄, T', S₃, S₄...).
- Assign MSSM fields irreducible representations under G_F and introduce SM singlets in non-trivial G_F representations ⇒ 'flavons'.

Mixing pattern

Spontaneously break G_F by assigning VEVs to flavon fields: "Correct" VEV alignment \Rightarrow desired mixing pattern.

In the following:

TBM mixing in the lepton sector based on a SUSY A_4 model.

christian.staudt@tum.de (TUM)

Broken Flavor Symmetries

Ingredients for an A₄ example

 A_4 has . . .

- \bullet four irreducible representations: $\mathbf{1},\mathbf{1}',\mathbf{1}''$ and 3,
- $\bullet \ \mbox{multiplication law: } \mathbf{3}\otimes \mathbf{3} \ = \ \mathbf{1}\oplus \mathbf{1'}\oplus \mathbf{1''}\oplus \mathbf{3}_{\mathsf{s}}\oplus \mathbf{3}_{\mathsf{a}} \ , \ \mbox{e.g.}$

$$(\boldsymbol{a}\otimes \boldsymbol{b})_{\mathbf{3}_{a}} = \mathrm{i}\,\sqrt{rac{3}{2}} \left(egin{array}{c} a_{2}\,b_{3}-a_{3}\,b_{2}\ a_{1}\,b_{2}-a_{2}\,b_{1}\ a_{3}\,b_{1}-a_{1}\,b_{3} \end{array}
ight) \,.$$

Ingredients for an A_4 example

 A_4 has . . .

- \bullet four irreducible representations: $1,1^{\prime},1^{\prime\prime}$ and 3,
- $\bullet \ \mbox{multiplication law: } \mathbf{3}\otimes \mathbf{3} \ = \ \mathbf{1}\oplus \mathbf{1'}\oplus \mathbf{1''}\oplus \mathbf{3}_{\mathsf{s}}\oplus \mathbf{3}_{\mathsf{a}} \ \mbox{, e.g.}$

$$(\boldsymbol{a}\otimes \boldsymbol{b})_{\mathbf{3}_{a}} = \mathrm{i}\sqrt{rac{3}{2}} \left(egin{array}{c} a_{2} \ b_{3} - a_{3} \ b_{2} \ a_{1} \ b_{2} - a_{2} \ b_{1} \ a_{3} \ b_{1} - a_{1} \ b_{3} \end{array}
ight) \,.$$

For an A_4 model giving TBM one needs

Altarelli and Feruglio [2005]

- three flavon fields: two A₄ triplets Φ_{ν} , Φ_e and the singlet ξ .
- The left-handed lepton doublets in an A₄ triplet $L = (L_e, L_\mu, L_\tau)^T$.
- The right-handed charged leptons, e_R, μ_R and τ_R, transforming as singlets 1, 1", and 1', respectively.

The superpotential

In the superpotential the flavons couple to the MSSM fields

$$\begin{aligned} \mathscr{W}_{\nu} &= \frac{\lambda_{1}}{\Lambda\Lambda_{\nu}} \left\{ \left[(L H_{u}) \otimes (L H_{u}) \right]_{\mathbf{3}_{s}} \otimes \Phi_{\nu} \right\}_{\mathbf{1}} + \frac{\lambda_{2}}{\Lambda\Lambda_{\nu}} \left[(L H_{u}) \otimes (L H_{u}) \right]_{\mathbf{1}} \xi , \\ \mathscr{W}_{e} &= \frac{h_{e}}{\Lambda} \left(\Phi_{e} \otimes L \right)_{\mathbf{1}} H_{d} \, e_{\mathsf{R}} + \frac{h_{\mu}}{\Lambda} \left(\Phi_{e} \otimes L \right)_{\mathbf{1}}, \, H_{d} \, \mu_{\mathsf{R}} + \frac{h_{\tau}}{\Lambda} \left(\Phi_{e} \otimes L \right)_{\mathbf{1}}, \, H_{d} \, \tau_{\mathsf{R}} , \end{aligned}$$

with

- Λ being the cut–off scale,
- Λ_{ν} being the seesaw–scale,
- $h_{e,\mu,\tau}$ and $\lambda_{1,2}$ being constants.

The superpotential

In the superpotential the flavons couple to the MSSM fields

$$\begin{aligned} \mathscr{W}_{\nu} &= \frac{\lambda_{1}}{\Lambda\Lambda_{\nu}} \left\{ \left[(LH_{u}) \otimes (LH_{u}) \right]_{\mathbf{3}_{s}} \otimes \Phi_{\nu} \right\}_{\mathbf{1}} + \frac{\lambda_{2}}{\Lambda\Lambda_{\nu}} \left[(LH_{u}) \otimes (LH_{u}) \right]_{\mathbf{1}} \xi , \\ \mathscr{W}_{e} &= \frac{h_{e}}{\Lambda} \left(\Phi_{e} \otimes L \right)_{\mathbf{1}} H_{d} e_{\mathsf{R}} + \frac{h_{\mu}}{\Lambda} \left(\Phi_{e} \otimes L \right)_{\mathbf{1}'} H_{d} \mu_{\mathsf{R}} + \frac{h_{\tau}}{\Lambda} \left(\Phi_{e} \otimes L \right)_{\mathbf{1}''} H_{d} \tau_{\mathsf{R}} . \end{aligned}$$

Spontaneous symmetry breaking

A₄ broken by flavon VEVs:

Electroweak symmetry broken by inserting Higgs VEVs

$$\begin{array}{lll} \langle H_u \rangle & = & (0, v_u)^T \\ \langle H_d \rangle & = & (v_d, 0)^T \end{array}$$

Lepton masses

After inserting all VEVs

$$\mathcal{W}_{\nu} = \frac{1}{2} L^{T} \overbrace{\begin{pmatrix} a+2d & -d & -d \\ -d & 2d & a-d \\ -d & a-d & 2d \end{pmatrix}}^{\mathbf{m}_{\nu}} L \text{ with } d = \sqrt{2} \lambda_{1} \frac{v_{\mu}^{2}}{\Lambda_{\nu}} \frac{v}{\Lambda}$$

$$\mathscr{W}_{e} = (e_{R}, \mu_{R}, \tau_{R}) \underbrace{\begin{pmatrix} y_{e} & 0 & 0 \\ 0 & y_{\mu} & 0 \\ 0 & 0 & y_{\tau} \end{pmatrix}}_{\mathbf{m}_{e}} L \text{ with } y_{e, \mu, \tau} = h_{e, \mu, \tau} \frac{v'}{\Lambda}.$$

Tri-bi-maximal mixing

 m_e is already diagonal, so we need to diagonalize m_{ν} :

$$V_{\nu,L}^{T} m_{\nu} V_{\nu,L} = \text{diag}(m_{1}, m_{2}, m_{3}) \text{ with } V_{\nu,L} = \begin{pmatrix} \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}}\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

Since m_{e} diagonal $\Rightarrow U_{\text{MNS}} = V_{e,L}^{\dagger} V_{\nu,L} = V_{\nu,L} = U_{\text{TBM}}$

$$\Rightarrow \theta_{12} = 35.3^{\circ}, \qquad \theta_{23} = 45^{\circ}, \qquad \theta_{13} = 0^{\circ} \ .$$

Good until measurement of non-vanishing θ_{13} by MINOS, Super-K, T2K, Double Chooz, Reno and Daya Bay.

Adamson et al. [2011] ,Abe et al. [2011a] ,Abe et al. [2011b] ,Abe et al. [2012] ,An et al. [2012] ,Ahn et al. [2012]

Can one fix TBM?

Measured mixing angles do not fit TBM

$$heta_{13}^{ ext{exp}} - heta_{13}^{ ext{TBM}} pprox 9^\circ$$
 .

Fix TBM or start fresh?

- Include higher order corrections from the superpotential?
- Different symmetry group/representations?
- Other effects?
- How sensible is flavor model building?

Can one fix TBM?

Measured mixing angles do not fit TBM

$$heta_{13}^{ ext{exp}} - heta_{13}^{ ext{TBM}} pprox 9^{\circ}$$
 .

Fix TBM or start fresh?

- Include higher order corrections from the superpotential?
- Different symmetry group/representations?
- Other effects?
- How sensible is flavor model building?

Address last two points with corrections from the Kähler potential.

Kähler potential

The supersymmetric Lagrangian is given by

$$\mathscr{L} \supset \int \mathrm{d}^2 \theta \, \mathrm{d}^2 \theta^{\dagger} \, \mathcal{K}[\Psi, \Psi^*] + \left(\int \mathrm{d}^2 \theta \, \mathscr{W}(\Psi) + \mathrm{c.c.} \right) + \dots$$

The Kähler potential K is a real non-holomorphic function and at tree level it is **canonical** $K = \Psi^{i}\Psi_{i}^{*}$, i.e. in the leptonic sector:

$$K_{\text{canonical}} = \left(L^{f}\right)^{\dagger} \delta_{fg} L^{g} + \left(R^{f}\right)^{\dagger} \delta_{fg} R^{g}$$

After integrating over superspace coordinates, proper kinetic terms i.e.

$$\mathscr{L} \supset -\partial^{\mu}\phi^{*}\,\partial_{\mu}\phi + \mathrm{i}\,\psi^{\dagger}\,\overline{\sigma}^{\mu}\,\partial_{\mu}\psi + \dots$$

Kähler potential

The supersymmetric Lagrangian is given by

$$\mathscr{L} \supset \int \mathrm{d}^2 \theta \, \mathrm{d}^2 \theta^{\dagger} \, \mathcal{K}[\Psi, \Psi^*] + \left(\int \mathrm{d}^2 \theta \, \mathscr{W}(\Psi) + \mathrm{c.c.} \right) + \dots$$

The Kähler potential K is a real non-holomorphic function and at tree level it is canonical $K = \Psi^i \Psi_i^*$, i.e. in the leptonic sector:

$$\mathcal{K}_{ ext{canonical}} = \left(L^f
ight)^\dagger \, \delta_{fg} \, L^g + \left(R^f
ight)^\dagger \, \delta_{fg} \, R^g$$

Higher order corrections

What if one has off-diagonal terms, i.e. $K_{canonical} + \Delta K$ with

$$\Delta K = \left(L^{f} \right)^{\dagger} (\Delta K_{L})_{fg} L^{g} + \left(R^{f} \right)^{\dagger} (\Delta K_{R})_{fg} R^{g} ?$$

christian.staudt@tum.de (TUM)

Kähler corrections for left-handed leptons

• Assume the corrections to be $\Delta K_L = -2 \times P$, with infinitesimal x and Hermitian matrix P. Then,

$$K_L = L^{\dagger} (1 - 2 \times P) L.$$

• Rotate to get canonically normalized fields

$$L' \rightarrow L = (1 - x P) L'$$
.

Kähler corrections for left-handed leptons

• Assume the corrections to be $\Delta K_L = -2 \times P$, with infinitesimal x and Hermitian matrix P. Then,

$$K_L = L^{\dagger} (1-2xP) L.$$

• Rotate to get canonically normalized fields

$$L' \rightarrow L = (1 - x P) L'$$
.

• Field redefinition induces change in the superpotential

$$\begin{aligned} \mathscr{W}_{\nu} &= \frac{1}{2} (L')^{T} m_{\nu} L' \\ &= \frac{1}{2} L^{T} (1 + x P^{T}) m_{\nu} (1 + x P) L \\ &= \frac{1}{2} L^{T} [m_{\nu} + x (P^{T} m_{\nu} + m_{\nu} P)] L . \end{aligned}$$

Change in mixing parameters

• Now we have a *x*-dependent neutrino mass matrix

$$m_{\nu}(x) = m_{\nu} + x \left(P^{T} m_{\nu} + m_{\nu} P \right)$$

• Differential equation:

$$\frac{\mathrm{d}m_{\nu}(x)}{\mathrm{d}x} = P^{T} m_{\nu} + m_{\nu} P.$$

 \Rightarrow Differential equation for mixing parameters, i.e. angles, phases . . .

Change in mixing parameters

• Now we have a *x*-dependent neutrino mass matrix

$$m_{\nu}(x) = m_{\nu} + x \left(P^{T} m_{\nu} + m_{\nu} P \right)$$

• Differential equation:

$$\frac{\mathrm{d}m_{\nu}(x)}{\mathrm{d}x} = P^T m_{\nu} + m_{\nu} P.$$

 \Rightarrow Differential equation for mixing parameters, i.e. angles, phases \ldots

• This has same structure as RGE for neutrino mass operator.

Antusch et al. [2003]

• Analytically solvable for all parameters.

Analytic computation

Formulae for change in mixing angles and phases available.

christian.staudt@tum.de (TUM)

Broken Flavor Symmetries

Where do these corrections come from?

Higher order Kähler terms with flavons

$$\Delta K \supset \Delta K_{\boldsymbol{X}}(\Phi) = \frac{1}{\Lambda^2} (L \Phi)_{\boldsymbol{X}}^{\dagger} (L \Phi)_{\boldsymbol{X}} \stackrel{\langle \Phi \rangle}{\Longrightarrow} L^{\dagger} \Delta K_L L$$

X is a representation of the flavor group G_F allowed by multiplication rules.

- These terms cannot be forbidden by any (conventional) symmetry.
- All discrete flavor symmetries have them.
- Structure of ΔK_L dependend on group G_F, flavon VEV $\langle \Phi \rangle$ and representation **X**.
- **Contributions can be sizable** \Rightarrow see with help of A₄ example.

Back to our A₄ example

Returning to previous example:

- Based on A₄, four irreducible representations: 1, 1', 1" and 3, leading to six possible contractions of the form $(L \otimes \Phi)^{\dagger}_{X} (L \otimes \Phi)_{X}$,
- two flavon triplets $\Phi_{
 u}$ and Φ_{e} .

 \Rightarrow 12 possible corrections.

Back to our A_4 example

Returning to previous example:

- Based on A₄, four irreducible representations: **1**, **1**', **1**" and **3**, leading to six possible contractions of the form $(L \otimes \Phi)^{\dagger}_{X} (L \otimes \Phi)_{X}$,
- two flavon triplets $\Phi_{
 u}$ and Φ_{e} .

 \Rightarrow 12 possible corrections.

Five independent corrections

 $\langle \Phi_e
angle = ({m v}', {m 0}, {m 0})$ leads to:

$$P_{\sf I} \;=\; {\sf diag}(1,0,0)\;, \quad P_{\sf II} \;=\; {\sf diag}(0,1,0) \quad {\sf and} \quad P_{\sf III} \;=\; {\sf diag}(0,0,1)\;,$$

$$\begin{split} \langle \Phi_{\nu} \rangle &= (\pmb{v}, \pmb{v}, \pmb{v}) \text{ leads to:} \\ P_{\mathsf{IV}} &= \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \quad \text{and} \quad P_{\mathsf{V}} \,=\, \begin{pmatrix} 0 & \mathrm{i} & -\mathrm{i} \\ -\mathrm{i} & 0 & \mathrm{i} \\ \mathrm{i} & -\mathrm{i} & 0 \end{pmatrix} \,. \end{split}$$

Back to our A_4 example

Returning to previous example:

- Based on A₄, four irreducible representations: **1**, **1**', **1**" and **3**, leading to six possible contractions of the form $(L \otimes \Phi)^{\dagger}_{X} (L \otimes \Phi)_{X}$,
- two flavon triplets $\Phi_{
 u}$ and Φ_{e} .

 \Rightarrow 12 possible corrections.

Five independent corrections

 $\langle \Phi_{\pmb{e}}
angle = (\pmb{
u'}, \pmb{0}, \pmb{0})$ leads to:

$$P_{\sf I} \;=\; {\sf diag}(1,0,0)\;, \quad P_{\sf II} \;=\; {\sf diag}(0,1,0) \;\;\; {\sf and} \;\;\; P_{\sf III} \;=\; {\sf diag}(0,0,1)\;,$$

$$\begin{split} \langle \Phi_{\nu} \rangle &= (\pmb{v}, \pmb{v}, \pmb{v}) \text{ leads to:} \\ P_{\mathsf{IV}} &= \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \quad \text{and} \quad P_{\mathsf{V}} &= \begin{pmatrix} 0 & i & -i \\ -i & 0 & i \\ i & -i & 0 \end{pmatrix}. \end{split}$$

Pv

.

Corrections from P_V

The correction from

due to the term

$$= \begin{pmatrix} 0 & \mathrm{i} & -\mathrm{i} \\ -\mathrm{i} & 0 & \mathrm{i} \\ \mathrm{i} & -\mathrm{i} & 0 \end{pmatrix}, \qquad \Delta K = \frac{\kappa_{\mathrm{V}}}{\Lambda^2} \left[(L \, \Phi_{\nu})^{\dagger}_{\mathbf{3}_{\mathrm{a}}} (L \, \Phi_{\nu})_{\mathbf{3}_{\mathrm{s}}} + \mathrm{h.c.} \right] \\ = \kappa_{\mathrm{V}} \cdot \frac{v^2}{\Lambda^2} \cdot 3\sqrt{3} \cdot (L^f)^{\dagger} (P_{\mathrm{V}})_{fg} (L^g)$$

Kähler corrections

Corrections from P_V

The correction from

due to the term

$$P_{\mathbf{V}} = \begin{pmatrix} \mathbf{0} & \mathbf{i} & -\mathbf{i} \\ -\mathbf{i} & \mathbf{0} & \mathbf{i} \\ \mathbf{i} & -\mathbf{i} & \mathbf{0} \end{pmatrix}, \qquad \Delta \mathcal{K} = \frac{\kappa_{\mathbf{V}}}{\Lambda^2} \left[(L \, \Phi_{\nu})^{\dagger}_{\mathbf{3}_{\mathbf{a}}} (L \, \Phi_{\nu})_{\mathbf{3}_{\mathbf{s}}} + \mathrm{h.c.} \right] \\ = \kappa_{\mathbf{V}} \cdot \frac{v^2}{\Lambda^2} \cdot 3\sqrt{3} \cdot (L^f)^{\dagger} (P_{\mathbf{V}})_{fg} (L^g)$$

Analytic formulae for change in θ_{13}

Starting from TBM, we get

$$\Delta heta_{13} \simeq \kappa_{
m V} \cdot rac{\mathbf{v}^2}{\Lambda^2} \cdot 3\sqrt{6} \; rac{m_1}{m_1 + m_3}$$

with m_i being neutrino masses .

Change in θ_{13}

Interpretation

P_{V} creates substantial deviation from TBM angles:

- \Rightarrow For large m_1 one gets $\Delta \theta_{13} \approx 8.42^{\circ}$.
- \Rightarrow Other angles do not change much.

Problem with mixing angles solved?

Interpretation

P_{V} creates substantial deviation from TBM angles:

- \Rightarrow For large m_1 one gets $\Delta \theta_{13} \approx 8.42^{\circ}$.
- \Rightarrow Other angles do not change much.

Problem with mixing angles solved?

No.

Interpretation

P_{V} creates substantial deviation from TBM angles:

- \Rightarrow For large m_1 one gets $\Delta \theta_{13} \approx 8.42^{\circ}$.
- \Rightarrow Other angles do not change much.

Problem with mixing angles solved?

No.

Other contributions from $P_{I,...,IV}$ incompatible with experiments, e.g. P_{IV} shifts θ_{12} and θ_{23} away from their best fit value.

How good are discrete flavor models?

Such corrections are always there and have rarely been considered.

- Several flavor groups with different VEV alignment have been used.
- Very fine-tuned models which try to describe mixing angles have not considered these effects.

How good are discrete flavor models?

Such corrections are always there and have rarely been considered.

- Several flavor groups with different VEV alignment have been used.
- Very fine-tuned models which try to describe mixing angles have not considered these effects.

Implications for flavor model building Positive view Negative view Simple models might work after all. Successful models get spoiled.

Way out:

- Build models which include all effects and still work.
- Understand Kähler terms better. Possibility to control effects?

Broken Flavor Symmetries

Conclusions

- Neutrinos have mass and there is a mismatch between mass- and weak-eigenstate ⇒ neutrinos oscillate.
- Mixing patterns can be described by discrete **flavor symmetries** and clever breaking schemes lead to correct mixing pattern.
- Contributions to the mixing from higher order terms in the Kähler **potential**. They are always there.
- The mixing angles experience **substantial changes** and one can describe these changes **analytically**.

Conclusions

- Neutrinos have mass and there is a mismatch between mass- and weak-eigenstate ⇒ neutrinos oscillate.
- Mixing patterns can be described by discrete **flavor symmetries** and clever breaking schemes lead to correct mixing pattern.
- Contributions to the mixing from higher order terms in the Kähler **potential**. They are always there.
- The mixing angles experience **substantial changes** and one can describe these changes **analytically**.

Save or destroy many models?

Need to understand/control terms from the Kähler potential in order to make predictions from flavor symmetries.

christian.staudt@tum.de (TUM)

Broken Flavor Symmetries

PPSM 09/11/2012 22 / 22

Change in θ_{12} from P_V

Change in θ_{23} from P_V

Kähler corrections

Outlook

A₄ triplet multiplication:

 $\mathbf{3}\otimes\mathbf{3} \ = \ \mathbf{1}\oplus\mathbf{1'}\oplus\mathbf{1''}\oplus\mathbf{3}_{\mathsf{s}}\oplus\mathbf{3}_{\mathsf{a}}\text{:}$

$$(\mathbf{a} \otimes \mathbf{b})_{\mathbf{1}} = \mathbf{a}_{1} b_{1} + \mathbf{a}_{2} b_{3} + \mathbf{a}_{3} b_{2} , (\mathbf{a} \otimes \mathbf{b})_{\mathbf{1}'} = \mathbf{a}_{3} b_{3} + \mathbf{a}_{1} b_{2} + \mathbf{a}_{2} b_{1} , (\mathbf{a} \otimes \mathbf{b})_{\mathbf{1}''} = \mathbf{a}_{2} b_{2} + \mathbf{a}_{1} b_{3} + \mathbf{a}_{3} b_{1} , (\mathbf{a} \otimes \mathbf{b})_{\mathbf{3}_{s}} = \frac{1}{\sqrt{2}} \begin{pmatrix} 2a_{1} b_{1} - a_{2} b_{3} - a_{3} b_{2} \\ 2a_{3} b_{3} - a_{1} b_{2} - a_{2} b_{1} \\ 2a_{2} b_{2} - a_{1} b_{3} - a_{3} b_{1} \end{pmatrix} , (\mathbf{a} \otimes \mathbf{b})_{\mathbf{3}_{a}} = i \sqrt{\frac{3}{2}} \begin{pmatrix} a_{2} b_{3} - a_{3} b_{2} \\ a_{1} b_{2} - a_{2} b_{1} \\ a_{3} b_{1} - a_{1} b_{3} \end{pmatrix} .$$

christian.staudt@tum.de (TUM)

Neutrino oscillations

References I

- K. Abe et al. Solar neutrino results in Super-Kamiokande-III. *Phys.Rev.*, D83:052010, 2011a. doi: 10.1103/PhysRevD.83.052010.
- K. Abe et al. Indication of Electron Neutrino Appearance from an Accelerator-produced Off-axis Muon Neutrino Beam. *Phys.Rev.Lett.*, 107:041801, 2011b. doi: 10.1103/PhysRevLett.107.041801.
- Y. Abe et al. Indication for the disappearance of reactor electron antineutrinos in the Double Chooz experiment. *Phys.Rev.Lett.*, 108:131801, 2012. doi: 10.1103/PhysRevLett.108.131801.
- P. Adamson et al. Improved search for muon-neutrino to electron-neutrino oscillations in MINOS. *Phys.Rev.Lett.*, 107:181802, 2011. doi: 10.1103/PhysRevLett.107.181802.
- J.K. Ahn et al. Observation of Reactor Electron Antineutrino Disappearance in the RENO Experiment. *Phys.Rev.Lett.*, 108:191802, 2012. doi: 10.1103/PhysRevLett.108.191802.
- Guido Altarelli and Ferruccio Feruglio. Tri-bimaximal neutrino mixing from discrete symmetry in extra dimensions. *Nucl.Phys.*, B720:64–88, 2005. doi: 10.1016/j.nuclphysb.2005.05.005.

References II

- F.P. An et al. Observation of electron-antineutrino disappearance at Daya Bay. *Phys.Rev.Lett.*, 108:171803, 2012. doi: 10.1103/PhysRevLett.108.171803.
- Stefan Antusch, Joern Kersten, Manfred Lindner, and Michael Ratz. Running neutrino masses, mixings and CP phases: Analytical results and phenomenological consequences. *Nucl.Phys.*, B674:401–433, 2003. doi: 10.1016/j.nuclphysb.2003.09.050.
- J. Beringer et al. Review of Particle Physics (RPP). *Phys.Rev.*, D86:010001, 2012. doi: 10.1103/PhysRevD.86.010001.
- Mu-Chun Chen, Maximilian Fallbacher, Michael Ratz, and Christian Staudt. On predictions from spontaneously broken flavor symmetries. 2012.
- G.L. Fogli, E. Lisi, A. Marrone, D. Montanino, A. Palazzo, et al. Global analysis of neutrino masses, mixings and phases: entering the era of leptonic CP violation searches. *Phys.Rev.*, D86:013012, 2012. doi: 10.1103/PhysRevD.86.013012.
- P.F. Harrison, D.H. Perkins, and W.G. Scott. Tri-bimaximal mixing and the neutrino oscillation data. *Phys.Lett.*, B530:167, 2002. doi: 10.1016/S0370-2693(02)01336-9.