PARTICLE PHYSICS SCHOOL MUNICH COLLOQUIUM

MAX-PLANCK-INSTITUT FÜR PHYSIK - DECEMBER 14, 2012

THEORY AND PHENOMENOLOGY OF 331 MODELS

MARIA VALENTINA CARLUCCI

Technische Universität München

INTERNATIONAL MAX PLANCK RESEARCH SCHOOL ON ELEMENTARY PARTICLE PHYSICS

OUTLINE

1/14

Introduction

- * New data and old tensions in the flavour sector
- * Motivations for the 331 models
- Theory of the 331 models
 - * General 331 model
 - * A specific realization
- Phenomenology of the 331 models
 - * Constraining the parameter space
 - * Key observables
- Conclusions and Outlook

INTRODUCTION VANISHING HOPES...

LHCb Collab., PRL **108** (2012) LHCb Collab., LHCb-CONF-2012-002 $B_{d,s} \rightarrow \mu^+ \mu^-$: doubly suppressed and very sensitive to new (pseudo)scalar particles

LHCb Collab. @ HCP 2012

INTRODUCTION ... AND OLD TENSIONS

INTRODUCTION

MOTIVATIONS FOR STUDYING 331 MODELS

Update the phenomenological analysis of New Physics models

Are they compatible with LHC data?

Can they solve the flavour tensions?

Features of 331 models

Explanation of why just 3 generations

Different treatment of the 3rd generation

Solution to the strong CP problem

THEORY OF 331 MODELS

DEFINITION

Gauge group $\mathcal{G} = SU(3)_C \otimes SU(3)_L \otimes U(1)_X$

$$\hat{Q} = \hat{T}^3 + \beta \hat{T}^8 + X \hat{I} \longrightarrow Y/2$$

Gauge bosons

Fermions

$$q_L \sim (3, 3, X_q^L) \to (3, 2, Y_q^L) \oplus (3, 1, Y_q^L)$$
$$q_R = (3, 1, Y_q^R)$$
$$\ell_L \sim (1, 3, X_\ell^L) \to (1, 2, Y_\ell^L) \oplus (1, 1, Y_\ell^L)$$
$$\ell_R = (1, 1, Y_\ell^R)$$

THEORY OF 331 MODELS ANOMALY CANCELLATION

Anomaly: a symmetry of the classical action is destroyed by loop corrections.

A gauge anomaly leads to the inconsistency of the theory!

Using group theory we can say if a theory is anomaly free:

$$\mathcal{A}^{abc} = \operatorname{Tr}\left[t^a \left\{t^b, t^c\right\}\right]$$

6/14

Results:

 $N_q = N_\ell \equiv N$

 $t_\ell + 3t_q = \bar{t}_\ell + 3\bar{t}_q = 2N$

Asymptotic freedom: N<5

$$N = 3$$
$$t_q = 2 , \quad \bar{t}_q = 1$$

THEORY OF 331 MODELS SYMMETRY BREAKING

$$SU(3)_L \otimes U(1)_X \xrightarrow{\langle \Phi_1 \rangle} SU(2)_L \otimes U(1)_Y \xrightarrow{\langle \Phi_2 \rangle} U(1)_Q$$
$$\langle \chi \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 0 \\ u \end{pmatrix} \qquad \langle \rho \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \\ 0 \end{pmatrix} \qquad \langle \eta \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} v' \\ 0 \\ 0 \end{pmatrix} \qquad \langle S_{1...4} \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 0 & w_i \\ 0 & 0 & 0 \\ w_i & 0 & 0 \end{pmatrix}$$

Gauge bosons masses and mixing

 $m_Y, m_V \gg m_W$

 $\begin{pmatrix} W^3_{\mu} \\ W^8_{\mu} \\ X_{\mu} \end{pmatrix} = U \begin{pmatrix} A_{\mu} \\ Z_{\mu} \\ Z'_{\mu} \end{pmatrix}$

Fermions masses and mixing

$$\begin{pmatrix} u_L \\ c_L \\ t_L \end{pmatrix} = W_L \begin{pmatrix} u'_L \\ c'_L \\ t'_L \end{pmatrix} \qquad \begin{pmatrix} d_L \\ s_L \\ b_L \end{pmatrix} = V_L \begin{pmatrix} d'_L \\ s'_L \\ b'_L \end{pmatrix}$$

 $W_L^{\dagger} V_L = V_{\rm CKM}$

Different treatment of the 3rd generation

 W_L and V_L are both relevant!

THEORY OF 331 MODELS 331 MODEL: $\beta = 1/\sqrt{3}$ 8/14

Fermions Gauge bosons **Higgs sector** $\begin{pmatrix} u \\ d \\ D \end{pmatrix} \begin{pmatrix} c \\ s \\ S \end{pmatrix} \begin{pmatrix} b \\ -t \\ T \end{pmatrix} \qquad \frac{1}{2} \begin{pmatrix} \dots & \sqrt{2W_{\mu}^{+}} & \sqrt{2Y_{\mu}^{+}} \\ \sqrt{2W_{\mu}^{-}} & \dots & \sqrt{2V_{\mu}^{0}} \\ \sqrt{2Y_{\mu}^{-}} & \sqrt{2}\bar{V}_{\mu}^{0} & \dots \end{pmatrix} \begin{pmatrix} A_{\mu} \\ Z_{\mu} \\ Z_{\mu}' \end{pmatrix}$ Feynman rules: what to take home Y⁺, V⁰, $\overline{V^0}$ only interact with D, S, T \longrightarrow all phenomenologically irrelevant $V_{L} = \begin{pmatrix} \tilde{c}_{12}\tilde{c}_{13} & \tilde{s}_{12}\tilde{c}_{23}e^{i\delta_{3}} - \tilde{c}_{12}\tilde{s}_{13}\tilde{s}_{23}e^{i(\delta_{1}-\delta_{2})} & \tilde{c}_{12}\tilde{c}_{23}\tilde{s}_{13}e^{i\delta_{1}} + \tilde{s}_{12}\tilde{s}_{23}e^{i(\delta_{2}+\delta_{3})} \\ -\tilde{c}_{13}\tilde{s}_{12}e^{-i\delta_{3}} & \tilde{c}_{12}\tilde{c}_{23} + \tilde{s}_{12}\tilde{s}_{13}\tilde{s}_{23}e^{i(\delta_{1}-\delta_{2}-\delta_{3})} & -\tilde{s}_{12}\tilde{s}_{13}\tilde{c}_{23}e^{i(\delta_{1}-\delta_{3})} - \tilde{c}_{12}\tilde{s}_{23}e^{i\delta_{2}} \\ -\tilde{s}_{13}e^{-i\delta_{1}} & -\tilde{c}_{13}\tilde{s}_{23}e^{-i\delta_{2}} & \tilde{c}_{13}\tilde{c}_{23} \end{pmatrix}$ q_{dL}^{j} Z' mediates FCNCs governated by 4 parameters: $\propto i g v_{3i}^* v_{3j}$ s_{13} s_{23} δ_1 δ2

PHENOMENOLOGY OF 331 MODELS

TENSIONS IN THE UNITARITY TRIANGLE: $\varepsilon_K - S_{\psi Ks} VS. V_{ub}$

 $sin 2\beta$ from...

Determination of | V_{ub} | ...

Prediction of BR(B \rightarrow T v)...

Scenario 1

exclusive (small) V_{ub} ϵ_K below the data of 1-2 σ $S_{\psi Ks}$ in agreement with data $BR(B \rightarrow \tau v)$ below data of 3σ

Scenario 2

inclusive (large) V_{ub} ϵ_K in agreement with data $S_{\psi Ks}$ above the data of 2-3 σ BR(B \rightarrow T v) below data of 1 σ

PHENOMENOLOGY OF 331 MODELS FCNCS AND THE PARAMETER SPACE

$$i\mathcal{L}_{\text{FCNC}} = i\left[\Delta^{sd}\left(\bar{s}\gamma^{\mu}P_{L}d\right) + \Delta^{bd}\left(\bar{b}\gamma^{\mu}P_{L}d\right) + \Delta^{bs}\left(\bar{b}\gamma^{\mu}P_{L}s\right)\right]Z'_{\mu}$$

 B_d observables depend only from s_{13} and δ_1 , B_s observables only from s_{23} and δ_2

 $\Delta^{sd} = 0.61 \ g \ s_{13} s_{23} \ e^{i(\delta_2 - \delta_1)} \qquad \Delta^{bd} = -0.61 \ g \ s_{13} \ e^{-i\delta_1}$

 $\Delta^{bs} = -0.61 \ g \ s_{23} \ e^{-i\delta_2}$

PHENOMENOLOGY OF 331 MODELS

$B_{d,s} \rightarrow \mu^+ \mu^-$ and the Parameter Space

Combining B_d and B_s observables \longrightarrow univocal selection of the parameter space area

PHENOMENOLOGY OF 331 MODELS

Moving to the K Sector: ϵ_K vs $\Delta M_{d,s}$

PHENOMENOLOGY OF 331 MODELS

MORE OBSERVABLES AND CORRELATIONS

CONCLUSIONS

• Last data from LHCb indicates that the SM has passed also to the tests of $S_{\psi\phi}$ and $B_{d,s} \rightarrow \mu^+\mu^-$; nevertheless, 1-3 σ tensions in flavour observabes continue to seriously afflict the SM.

The 331 models are worth of study since they explain why there are just 3 generations of fermions. They feature a Z' which mediate tree-level FCNCs with few new parameters.

• The parameter space will be strongly constrained in the next future: the model can survive and relax many flavour tensions, or can be ruled out.

Buras, De Fazio, Girrbach and MVC, 1211.1237 MVC, 1210.5421; MVC, 1210.0719; MVC, 1209.5230

THANKS!