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Figure 1: Feynman diagrams for the production of squarks and gluinos in lowest order.
The diagrams without and with crossed final-state lines [e.g. in (b)] represent t- and u-
channel diagrams, respectively. The diagrams in (c) and the last diagram in (d) are a
result of the Majorana nature of gluinos. Note that some of the above diagrams contribute
only for specific flavours and chiralities of the squarks.
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SQUARKS AND GLUINOS AT THE LHC
PRODUCTION

q̃q̃ + q̃ ¯̃q + q̃g̃ + g̃g̃LO;
√
s = 14 TeV σ [pb]
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Higher Order Corrections to Production

NLO QCD/SUSY-QCD
Beenakker et al.’96, Goncalves-Netto et al. ‘12

LO EW
Bornhauser et al. ’07

NLO EW
Germer, Hollik, 
Mirabella,Trenkel ’10, ....

Beyond NLO 
(resummed)
Beenakker et al. ’09, 
Falgari, Schwinn, Wever ’12, ...

Class QCD diagram(s) EW diagram(s)

PP → q̃αq̃β
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g̃ g̃ + χ̃0 χ̃0

PP → q̃αq̃′β
different flavor,
same doublet

g̃ + χ̃0 χ̃±

PP → q̃αq̃′β
different flavor,
different doublet

g̃ + χ̃0

(

χ̃±

)

Figure 1: Parton-level Feynman diagrams for the three classes of squark-squark production at
tree-level, where α,β = {L,R}. The first class describes the production of two squarks of the same
flavor, the second class that of two squarks of the same isospin doublet (but different flavor) and
the third class refers to the production of two squarks belonging to different isospin doublets. In
the third class, the subprocess in brackets cannot interfere with other diagrams due to different
initial state particles. In all three classes, the final-state squarks are of the same generation as the
initial-state quarks.

mediated by neutralino or chargino exchange. Quarks and squarks are of the same flavor,

also in the EW diagrams. The only exception is given by the two pure-EW chargino-

mediated subprocesses ud → d̃Lc̃L and cd → ũLs̃L belonging to the third class, which

contribute to d̃Lc̃L and ũLs̃L final states, respectively. Note that only t- and u-channel

diagrams are present, but no s-channel diagrams.

The appearance of both t- and u-channel diagrams for chirality-diagonal q̃αq̃′α produc-

tion gives rise to nonzero interferences between QCD and EW diagrams already at tree-

level.1 The full tree-level contributions to the cross section are thus given by the O(α2
s)

Born contribution and the O(αsα+α2) EW contributions. Photon-induced squark–squark

production is not possible at lowest order from charge and color conservation.

To keep track of the corresponding order in perturbation theory of the various contri-

butions, we introduce the notation dσ̂a, b [Ma, b] in order to refer to the cross section [matrix

element] at a given order O(αa
sα

b) in the strong and electroweak couplings, respectively.

Results are given in terms of the Mandelstam variables, defined as usual,

ŝ = (p1 + p2)
2, t̂ = (p1 − p3)

2, û = (p1 − p4)
2. (2.4)

The differential partonic cross section for a given subprocess qq′ → q̃αq̃′β at LO can

thus be written as

dσ̂2, 0(ŝ) =
∑

∣

∣

∣
M1, 0

∣

∣

∣

2 dt̂

16πŝ2
, (2.5)

1In the non-diagonal case, q̃Lq̃
′
R production, the interference contributions vanish as a consequence of

the trivial squark mixing matrices in the limit of no L-R mixing, see also the discussion in Appendix A.
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Figure 2: Sample of Feynman diagrams to illustrate the virtual contributions at O(α2
sα). Three

gauge invariant subsets of interferences occur at this order. The label of perturbative order is
attached to each diagram. EW refers to electroweakly interacting particles and QCD to strongly
interacting particles in the loop insertions. The full sets of diagrams are shown in Figs. 13, 14,
and 15.

Figure 2. All three interference terms yield non-vanishing contributions to the cross section.

For each subprocess, the partonic cross section can be written as

dσ̂2, 1
virt. =

dt̂

16πŝ2

∑

2Re
{

(

M1, 0
)∗ M1, 1

(EW) +
(

M1, 0
)∗ M1, 1

(QCD)

}

+
dt̂

16πŝ2

∑

2Re
{

(

M0, 1
)∗ M2, 0

}

.

(3.1)

The first line corresponds to (a) and (b) of Figure 2 and is given by the interference of

M1, 0 with M1, 1. The amplitude M1, 1 is split into two parts, M1, 1
(EW) and M1, 1

(QCD), the

first arising from tree-level QCD diagrams with EW insertions (Figure 2a, right), and the

latter from tree-level EW diagrams with QCD insertions (Figure 2b, right). The second

line in Eq. (3.1), corresponding to Figure 2c, is given by the interference of M0, 1 with the

pure-QCD one loop amplitude M2, 0. Care has to be taken with diagrams containing a

four-squark vertex. This vertex includes the electroweak as well as the strong coupling and

the appropriate part has to be selected in each interference contribution to match the right

order, as indicated in Figure 2.

The full set of virtual corrections is UV finite after renormalization of the theory and

the inclusion of the proper set of one-loop counterterms. The renormalization for squark–

squark production proceeds in close analogy to that for squark–anti-squark production

described in [27] and is sketched here only briefly. Each of the three interference subsets is

gauge-independent by itself and can be renormalized separately.

In the first group, shown in Figure 2a, UV singularities only arise from gluino-mediated

amplitudes with weak insertions (M1, 1
(EW)). We include the diagrams with counterterms for

the qg̃q̃α vertex, see Figure 13, and evaluate the renormalization constants at O(α). At this

order in the perturbative expansion we need to renormalize quark and squark fields, while
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∑

2Re
{

(

M1, 0
)∗ M1, 1

(EW) +
(

M1, 0
)∗ M1, 1

(QCD)

}

+
dt̂

16πŝ2
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pure-QCD one loop amplitude M2, 0. Care has to be taken with diagrams containing a
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Class QCD diagram(s) EW diagram(s)

PP → q̃αq̃β
same flavor

g̃ g̃ + χ̃0 χ̃0

PP → q̃αq̃′β
different flavor,
same doublet

g̃ + χ̃0 χ̃±

PP → q̃αq̃′β
different flavor,
different doublet

g̃ + χ̃0

(

χ̃±

)

Figure 1: Parton-level Feynman diagrams for the three classes of squark-squark production at
tree-level, where α,β = {L,R}. The first class describes the production of two squarks of the same
flavor, the second class that of two squarks of the same isospin doublet (but different flavor) and
the third class refers to the production of two squarks belonging to different isospin doublets. In
the third class, the subprocess in brackets cannot interfere with other diagrams due to different
initial state particles. In all three classes, the final-state squarks are of the same generation as the
initial-state quarks.

mediated by neutralino or chargino exchange. Quarks and squarks are of the same flavor,

also in the EW diagrams. The only exception is given by the two pure-EW chargino-

mediated subprocesses ud → d̃Lc̃L and cd → ũLs̃L belonging to the third class, which

contribute to d̃Lc̃L and ũLs̃L final states, respectively. Note that only t- and u-channel

diagrams are present, but no s-channel diagrams.

The appearance of both t- and u-channel diagrams for chirality-diagonal q̃αq̃′α produc-

tion gives rise to nonzero interferences between QCD and EW diagrams already at tree-

level.1 The full tree-level contributions to the cross section are thus given by the O(α2
s)

Born contribution and the O(αsα+α2) EW contributions. Photon-induced squark–squark

production is not possible at lowest order from charge and color conservation.

To keep track of the corresponding order in perturbation theory of the various contri-

butions, we introduce the notation dσ̂a, b [Ma, b] in order to refer to the cross section [matrix

element] at a given order O(αa
sα

b) in the strong and electroweak couplings, respectively.

Results are given in terms of the Mandelstam variables, defined as usual,

ŝ = (p1 + p2)
2, t̂ = (p1 − p3)

2, û = (p1 − p4)
2. (2.4)

The differential partonic cross section for a given subprocess qq′ → q̃αq̃′β at LO can

thus be written as

dσ̂2, 0(ŝ) =
∑

∣

∣

∣
M1, 0

∣

∣

∣

2 dt̂

16πŝ2
, (2.5)

1In the non-diagonal case, q̃Lq̃
′
R production, the interference contributions vanish as a consequence of

the trivial squark mixing matrices in the limit of no L-R mixing, see also the discussion in Appendix A.
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Figure 2. All three interference terms yield non-vanishing contributions to the cross section.

For each subprocess, the partonic cross section can be written as
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+
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(3.1)

The first line corresponds to (a) and (b) of Figure 2 and is given by the interference of

M1, 0 with M1, 1. The amplitude M1, 1 is split into two parts, M1, 1
(EW) and M1, 1

(QCD), the

first arising from tree-level QCD diagrams with EW insertions (Figure 2a, right), and the

latter from tree-level EW diagrams with QCD insertions (Figure 2b, right). The second

line in Eq. (3.1), corresponding to Figure 2c, is given by the interference of M0, 1 with the

pure-QCD one loop amplitude M2, 0. Care has to be taken with diagrams containing a

four-squark vertex. This vertex includes the electroweak as well as the strong coupling and

the appropriate part has to be selected in each interference contribution to match the right

order, as indicated in Figure 2.

The full set of virtual corrections is UV finite after renormalization of the theory and

the inclusion of the proper set of one-loop counterterms. The renormalization for squark–

squark production proceeds in close analogy to that for squark–anti-squark production

described in [27] and is sketched here only briefly. Each of the three interference subsets is

gauge-independent by itself and can be renormalized separately.

In the first group, shown in Figure 2a, UV singularities only arise from gluino-mediated

amplitudes with weak insertions (M1, 1
(EW)). We include the diagrams with counterterms for

the qg̃q̃α vertex, see Figure 13, and evaluate the renormalization constants at O(α). At this

order in the perturbative expansion we need to renormalize quark and squark fields, while
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Figure 2: Sample of Feynman diagrams to illustrate the virtual contributions at O(α2
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gauge invariant subsets of interferences occur at this order. The label of perturbative order is
attached to each diagram. EW refers to electroweakly interacting particles and QCD to strongly
interacting particles in the loop insertions. The full sets of diagrams are shown in Figs. 13, 14,
and 15.

Figure 2. All three interference terms yield non-vanishing contributions to the cross section.

For each subprocess, the partonic cross section can be written as
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virt. =
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(EW) +
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2Re
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)∗ M2, 0
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.

(3.1)

The first line corresponds to (a) and (b) of Figure 2 and is given by the interference of

M1, 0 with M1, 1. The amplitude M1, 1 is split into two parts, M1, 1
(EW) and M1, 1

(QCD), the

first arising from tree-level QCD diagrams with EW insertions (Figure 2a, right), and the

latter from tree-level EW diagrams with QCD insertions (Figure 2b, right). The second

line in Eq. (3.1), corresponding to Figure 2c, is given by the interference of M0, 1 with the

pure-QCD one loop amplitude M2, 0. Care has to be taken with diagrams containing a

four-squark vertex. This vertex includes the electroweak as well as the strong coupling and

the appropriate part has to be selected in each interference contribution to match the right

order, as indicated in Figure 2.

The full set of virtual corrections is UV finite after renormalization of the theory and

the inclusion of the proper set of one-loop counterterms. The renormalization for squark–

squark production proceeds in close analogy to that for squark–anti-squark production

described in [27] and is sketched here only briefly. Each of the three interference subsets is

gauge-independent by itself and can be renormalized separately.

In the first group, shown in Figure 2a, UV singularities only arise from gluino-mediated

amplitudes with weak insertions (M1, 1
(EW)). We include the diagrams with counterterms for

the qg̃q̃α vertex, see Figure 13, and evaluate the renormalization constants at O(α). At this

order in the perturbative expansion we need to renormalize quark and squark fields, while
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Figure 11: (a) Transverse momentum distribution of the hardest squark for ũLd̃L production
within the SPS1a′ scenario. Strong cancellations occur between the different contributions at NLO
EW. (b) Relative NLO EWcontribution, defined as the ratio of dσNLO EW/dpT and dσBorn/dpT .

Up to now, our discussion has only been for inclusive combinations of final-state squarks

for given chiralities. To get further insight on the cross section, we show in Table 6 the

cross section divided up into the various subprocesses for squark–squark production within

the SPS1a′ scenario. Again, anti-particles are included. Owing to the degenerate masses

of first- and second-generation squarks, we do not distinguish between final states that

result from exchanging both squarks with their first or second generation counterpart,

i.e. ũLũL production also includes c̃Lc̃L production, etc.. This reduces the number of

distinct subprocesses from 36 down to 22. The contributions to ∆σtree EW are always

positive and are largest for ũLd̃L production due to the interference of gluino and chargino

exchange diagrams and constitute 57% of the inclusive tree-level EW contribution, see also

Table 3. One even finds that the inclusive tree-level EW contribution is given to 98%

by only five processes, namely ũLũL, ũRũR, d̃Ld̃L, ũLd̃L and ũLs̃L. The contributions to

∆σNLO EW are mostly negative, reducing the importance of EW contributions. In contrast

to the tree-level EW case, many processes contribute with a significant amount to the

inclusive NLO EW contribution of the cross section. Especially for processes with squarks

of different generations, ∆σEW is mostly dominated by NLO EW contributions. The size

of the NLO EW contributions is often reduced due to the interplay of QCD-type and EW-

type corrections as shown in Figure 11 in the case of ũLd̃L production. The different types

of NLO EW corrections partially cancel. Furthermore, the sum contains corrections of

positive and negative sign, leading to an integrated result ∆σNLO EW that is considerably

smaller than the corrections affecting the LO result in various phase-space regions.

5. Conclusions

We have studied the hadronic production of two squarks or two anti-squarks within the

MSSM, including tree-level EW and NLO EW cross section contributions of O(αs α + α2)

and O(α2
sα), respectively. In contrast to pure QCD computations, one has to treat pro-

cesses with squarks of different flavor or chirality separately.
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Figure 5: Loop and counterterm diagrams (a) and gluon radiation diagrams (b) for squark decays.

The term dΓsoft
q̃→qχ̃0

j (g)
can be calculated by the same strategy as for dσ̂soft

qq′→q̃q̃′(g), yielding

dΓsoft
q̃→qχ̃0

j (g)
= −

2αs

3π

{

2
∑

i,j=1;i<j

εiεj Iij
}

dΓ(0)
q̃→qχ̃0

j
, (4.7)

where the Iij are defined in eq. (B.2).

Collinear divergences now emerge from the final state. Making again use of the results of [76],
the collinear emission of gluons with energy larger than ∆E into a cone with opening angle ∆θ
yields the contribution

dΓcoll
q̃→qχ̃0

j (g)
= dΓ(0)

q̃→qχ̃0
j

(4.8)

·
2αs

3π

[

9

2
−

2

3
π2 −

3

2
log

(

2E2
q,max δθ
m2

q

)

+ 2 log (δs)

(

1− log

(

2E2
q,max δθ
m2

q

))]

,

where δs = 2∆E/mq̃, δθ = 1 − cos (∆θ) " ∆θ2/2, and Eq,max =
m2

q̃−m2
χ̃0
j

2mχ̃0
j

, the maximum energy

available for the quark in the squark rest frame. Gluons with θ < ∆θ are recombined with the
emitter quark into a quark with momentum precomb = pq + pg. In general, differential distributions
in the quark momenta are dependent on the slicing parameter ∆θ. However, this dependence will
disappear once a jets algorithm that is much more inclusive in the recombination of quarks and
gluons, is applied (see section 5).

The contribution dΓhard
q̃→qχ̃0

j
from real emission of hard gluons (Eg > ∆E) at large angles (θ > ∆θ)

is evaluated by numerical integration of the squared matrix elements, obtained from the diagrams
in figure 5(b).

4.3 Total decay width

The total squark decay width Γ(0)
q̃ at LO is obtained by summing the partial decay widths of the 6

different possible decay channels into neutralinos and charginos (assuming always mg̃ > mq̃). The
partial decay widths into neutralinos are given directly by eq. (4.1). For charginos, the partial decay
widths Γ(0)

q̃→q′χ̃±
j

are also described by the formula (4.1), with the specification fR = 0 and

fL =
Vj1

sW
for q̃ = ũ, c̃, fL =

Uj1

sW
for q̃ = d̃, s̃, (4.9)

for the coupling constants. Here, U, V are the mixing matrices in the chargino sector.

For the total decay width at NLO, one has to calculate the NLO QCD corrections for each
channel, which can be done analytically performing the full phase space integration over the three-
particle final state with the radiated gluon and adding the loop contributions. The six partial decay
widths contributing to Γ(0+1)

q̃ at NLO can be expressed in terms of their respective LO result and a

– 13 –
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Figure 2: Feynman diagrams contributing to a) one-loop one-particle-irreducible three-
point vertex functions Λ1PI – eq. (41); b) tree-level photon bremsstrahlung. Notation as
in Fig. 1.
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NLO corrections to on-shell squark–squark
production and decay at the LHC

W. Hollik, J. M. Lindert, D. Pagani

May 20, 2012

We present the analysis of the signature jj+ �ET (+X) via squark–squark pro-
duction and direct decay into the lightest neutralino, pp → q̃q̃� → jjχ̃0

1χ̃
0
1(+X),

in next-to-leading order QCD within the framework of the minimal supersym-
metric Standard Model.
We provide a consistent, fully differential calculation of NLO QCD factorizable
corrections to the given processes with on-shell squarks.
Clustering final states into partonic jets, we investigate the experimental inclu-
sive signature jj+ �ET and we choose for illustration several benchmark scenarios.
We compare resulting differential distributions with leading-order approxima-
tion rescaled by a flat K-factor and examine a possible impact for cut-and-count
searches for supersymmetry at the LHC.

pp → q̃q̃� → qq�χ̃0
1χ̃

0
1(+X)

1

SPS1a ũL ũR d̃L d̃R g̃ χ̃0
1

mass (GeV) 563.6 546.7 569.0 546.6 608.5 97.0

Table 1: On-shell masses of the squarks, the gluino, and the lightest neutralino within the different SUSY

scenarios considered. All masses are given in GeV.

10.1.5 ũL ũR d̃L d̃R g̃ χ̃0
1

mass (GeV) 1437.7 1382.3 1439.7 1376.9 1568.6 291.3

Table 2: On-shell masses of the squarks, the gluino, and the lightest neutralino within the different SUSY

scenarios considered. All masses are given in GeV.

We present the analysis of the signature jj+ �ET (+X) via squark–squark production and direct
decay into the lightest neutralino, pp → q̃q̃� → jjχ̃0

1χ̃
0
1(+X), in next-to-leading order QCD within

the framework of the minimal supersymmetric Standard Model.
We provide a consistent, fully differential calculation of NLO QCD factorizable corrections to the
given processes with on-shell squarks.
Clustering final states into partonic jets, we investigate the experimental inclusive signature jj +
�ET and we choose for illustration several benchmark scenarios. We compare resulting differential
distributions with leading-order approximation rescaled by a flat K-factor and examine a possible
impact for cut-and-count searches for supersymmetry at the LHC.

pp → q̃q̃� → qq�χ̃0
1χ̃

0
1(+X)

M =
�

i,j∈{0,1}

Ni,j

[(k1 ± δ1,iq)2 −m2
q̃ + iΓq̃mq̃][(k2 ± δ1,jq)2 −m2

q̃ + iΓq̃mq̃]
=

�

i,j∈{0,1}

Mi,j (1)

M� =
�

i�,j�∈{0,1}

N �
i�,j�

[(k1 ± δ1,i�q)2 −m2
q̃ + iΓq̃mq̃][(k2 ± δ1,j�q)2 −m2

q̃ + iΓq̃mq̃]
=

�

i,j∈{0,1}

Mi�,j�

Mi,j = Mprod
Mdecay1Mdecay2

K1K2
M�

i,j = M�
prod

M�
decay1

M�
decay2

K1K2
(2)

|Mreal|2 = |Mreal,prod|2 + |Mreal,decay1|2 + |Mreal,decay2|2 +
2Re(Mreal,prod,M∗

real,decay1) + 2Re(Mreal,prod,M∗
real,decay2) + 2Re(Mreal,decay1,M∗

real,decay2)

Re(M∗
i,jM�

i,j) = Re(M∗
prodM�

prod)Re(M∗
decay1

M�
decay1

)Re(M∗
decay2

M�
decay2

)
1

|K1|2|K2|2

dσ(0+1)

NWA(pp → q̃q̃� → qχ̃0
1q

�χ̃0
1(+X)) =

1

Γ(0)
q̃ Γ(0)

q̃�

�
dσ(0)

pp→q̃q̃�dΓ
(0)
q̃→qχ̃0

1
dΓ(0)

q̃�→q�χ̃0
1

�
1−

Γ(1)
q̃

Γ(0)
q̃

−
Γ(1)
q̃�

Γ(0)
q̃�

�

+dσ(0)
pp→q̃q̃�dΓ

(1)
q̃→qχ̃0

1
dΓ(0)

q̃�→q�χ̃0
1
+ dσ(0)

pp→q̃q̃�dΓ
(0)
q̃→qχ̃0

1
dΓ(1)

q̃�→q�χ̃0
1

+dσ(1)
pp→q̃q̃�dΓ

(0)
q̃→qχ̃0

1
dΓ(0)

q̃�→q�χ̃0
1

�

qq� → q̃q̃� → qχ̃0
1q

�χ̃0
1

2j + �ET (+X)
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We study the experimental signature

via squark-squark production and direct 
decay into the lightest neutralino.
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Why squark-squark channel?



problem of unstable particles

idea of calcultaion

overview of article

When squarks and gluino not too heavy large production cross section for colored sparticle pro-
duction. And due to PDFs for rather heavy q̃, g̃ one of the largest contributions is q̃q̃ production.

2. Method

We investigate the production of squark-squark pairs of the first two generations induced by proton-
proton collision, with subsequent decays of the squarks into lightest neutralinos. The only partonic
subprocesses that contribute are

qiqj → q̃i,aq̃j,b → qiχ̃
0
1qjχ̃

0
1 , q̄iq̄j → q̃∗i,aq̃

∗
j,b → q̄iχ̃

0
1q̄jχ̃

0
1 , (2.1)

[L: correct to put here also the c.c. process, right? ] where i, j = {u, d, c, s} denote the flavours of
the (s)quarks and a, b = {L,R} their chiralities. For the sake of clarity we will use the notation
qq′ → q̃q̃′ → qχ̃0

1q
′χ̃0

1 where the specific chiralities and flavour are not important in the discussion.
Also, we will usually drop the explicit notion of the charge conjugate subprocess, as all following
arguments hold identically. We include it however in our numerical evaluation.
In the considered process, squarks appears as intermediate particles [L: particles vs. states? i don’t
care]. In the limit Γq̃/mq̃ → 0, where Γq̃ and mq̃ are the total decay width and mass of the squarks,
their contribution from the propagators in the squared amplitude can be rewritten as following

1

(p2 −m2
q̃)

2 +m2
q̃Γ

2
q̃

→
π

mq̃Γq̃
δ(p2 −m2

q̃) . (2.2)

[L: define p? ] As explained in Appendix ??, in the narrow width approximation (NWA) the Born
partonic total cross section can now be expressed as

σ̂(0)

NWA = σ̂(0)(qq′ → q̃q̃′)×BR(0)(q̃ → qχ̃0
1)× BR(0)(q̃′ → q′χ̃0

1) . (2.3)

Thus, the squarks are produced on-shell and the 2 → 2 partonic cross section at Born level is given
by σ̂(0), the respective Born level branching ratios (BR) by BR(0). In this limit we exclude off-shell
squark contributions and we can consistently consider the process as independent production of the
squarks and their following decays. Thus, the calculation can be factorized into two [L: three?? two
decays! don’t now ] steps. [L: suggest to drop: , making analytical and numerical computations.]
[P: I would drop the sentence: The Born case is anyway straightforward also without narrow width
approximation, so it can be used to estimate the numerical effects of neglecting the subleading terms
in the expansion Γ/m → 0.][L: jep, we can put a note on our other paper: ”Will be presented
elsewhere..]
[L: drop: The main goal of this work is the study of differential distributions including higher order
effects.] Due to the scalar nature of the squark and thus the lack of spin correlations between pro-
duction stage and decay stages of the considered process, at LO eq. (2.3) can directly be generalized
to a complete differential form,

dσ̂(0)

NWA
dtdφd cos(θ̃1)dφ̃1d cos(θ̃2)dφ̃2

=
dσ̂(0)

qq′→q̃q̃′

dtdφ

1

Γtot
q̃

dΓ(0)
q̃→qχ̃0

1

d cos(θ̃1)dφ̃1

1

Γtot
q̃′

dΓ(0)
q̃′→q′χ̃0

1

d cos(θ̃2)dφ̃2

. (2.4)
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squarks and their following decays. Thus, the calculation can be factorized into two [L: three?? two
decays! don’t now ] steps. [L: suggest to drop: , making analytical and numerical computations.]
[P: I would drop the sentence: The Born case is anyway straightforward also without narrow width
approximation, so it can be used to estimate the numerical effects of neglecting the subleading terms
in the expansion Γ/m → 0.][L: jep, we can put a note on our other paper: ”Will be presented
elsewhere..]
[L: drop: The main goal of this work is the study of differential distributions including higher order
effects.] Due to the scalar nature of the squark and thus the lack of spin correlations between pro-
duction stage and decay stages of the considered process, at LO eq. (2.3) can directly be generalized
to a complete differential form,
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Hadronic differential LO cross section in NWA 

p19MSSM1 ũL ũR d̃L d̃R g̃ χ̃0

1

mass (GeV) 339.6 394.8 348.3 392.7 414.7 299.1

Table 3: On-shell masses of the squarks, the gluino, and the lightest neutralino within the different SUSY

scenarios considered. All masses are given in GeV.
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problem of unstable particles

idea of calcultaion

overview of article

When squarks and gluino not too heavy large production cross section for colored sparticle pro-
duction. And due to PDFs for rather heavy q̃, g̃ one of the largest contributions is q̃q̃ production.

2. Method

We investigate the production of squark-squark pairs of the first two generations induced by proton-
proton collision, with subsequent decays of the squarks into lightest neutralinos. The only partonic
subprocesses that contribute are

qiqj → q̃i,aq̃j,b → qiχ̃
0
1qjχ̃

0
1 , q̄iq̄j → q̃∗i,aq̃

∗
j,b → q̄iχ̃

0
1q̄jχ̃

0
1 , (2.1)

[L: correct to put here also the c.c. process, right? ] where i, j = {u, d, c, s} denote the flavours of
the (s)quarks and a, b = {L,R} their chiralities. For the sake of clarity we will use the notation
qq′ → q̃q̃′ → qχ̃0

1q
′χ̃0

1 where the specific chiralities and flavour are not important in the discussion.
Also, we will usually drop the explicit notion of the charge conjugate subprocess, as all following
arguments hold identically. We include it however in our numerical evaluation.
In the considered process, squarks appears as intermediate particles [L: particles vs. states? i don’t
care]. In the limit Γq̃/mq̃ → 0, where Γq̃ and mq̃ are the total decay width and mass of the squarks,
their contribution from the propagators in the squared amplitude can be rewritten as following

1

(p2 −m2
q̃)

2 +m2
q̃Γ

2
q̃

→
π

mq̃Γq̃
δ(p2 −m2

q̃) . (2.2)

[L: define p? ] As explained in Appendix ??, in the narrow width approximation (NWA) the Born
partonic total cross section can now be expressed as

σ̂(0)

NWA = σ̂(0)(qq′ → q̃q̃′)×BR(0)(q̃ → qχ̃0
1)× BR(0)(q̃′ → q′χ̃0

1) . (2.3)

Thus, the squarks are produced on-shell and the 2 → 2 partonic cross section at Born level is given
by σ̂(0), the respective Born level branching ratios (BR) by BR(0). In this limit we exclude off-shell
squark contributions and we can consistently consider the process as independent production of the
squarks and their following decays. Thus, the calculation can be factorized into two [L: three?? two
decays! don’t now ] steps. [L: suggest to drop: , making analytical and numerical computations.]
[P: I would drop the sentence: The Born case is anyway straightforward also without narrow width
approximation, so it can be used to estimate the numerical effects of neglecting the subleading terms
in the expansion Γ/m → 0.][L: jep, we can put a note on our other paper: ”Will be presented
elsewhere..]
[L: drop: The main goal of this work is the study of differential distributions including higher order
effects.] Due to the scalar nature of the squark and thus the lack of spin correlations between pro-
duction stage and decay stages of the considered process, at LO eq. (2.3) can directly be generalized
to a complete differential form,
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factorizable corrections

problem of unstable particles

idea of calcultaion

overview of article

When squarks and gluino not too heavy large production cross section for colored sparticle pro-
duction. And due to PDFs for rather heavy q̃, g̃ one of the largest contributions is q̃q̃ production.

2. Method

We investigate the production of squark-squark pairs of the first two generations induced by proton-
proton collision, with subsequent decays of the squarks into lightest neutralinos. The only partonic
subprocesses that contribute are

qiqj → q̃i,aq̃j,b → qiχ̃
0
1qjχ̃

0
1 , q̄iq̄j → q̃∗i,aq̃

∗
j,b → q̄iχ̃

0
1q̄jχ̃

0
1 , (2.1)

[L: correct to put here also the c.c. process, right? ] where i, j = {u, d, c, s} denote the flavours of
the (s)quarks and a, b = {L,R} their chiralities. For the sake of clarity we will use the notation
qq′ → q̃q̃′ → qχ̃0

1q
′χ̃0

1 where the specific chiralities and flavour are not important in the discussion.
Also, we will usually drop the explicit notion of the charge conjugate subprocess, as all following
arguments hold identically. We include it however in our numerical evaluation.
In the considered process, squarks appears as intermediate particles [L: particles vs. states? i don’t
care]. In the limit Γq̃/mq̃ → 0, where Γq̃ and mq̃ are the total decay width and mass of the squarks,
their contribution from the propagators in the squared amplitude can be rewritten as following

1

(p2 −m2
q̃)

2 +m2
q̃Γ

2
q̃

→
π

mq̃Γq̃
δ(p2 −m2

q̃) . (2.2)

[L: define p? ] As explained in Appendix ??, in the narrow width approximation (NWA) the Born
partonic total cross section can now be expressed as

σ̂(0)

NWA = σ̂(0)(qq′ → q̃q̃′)×BR(0)(q̃ → qχ̃0
1)× BR(0)(q̃′ → q′χ̃0

1) . (2.3)

Thus, the squarks are produced on-shell and the 2 → 2 partonic cross section at Born level is given
by σ̂(0), the respective Born level branching ratios (BR) by BR(0). In this limit we exclude off-shell
squark contributions and we can consistently consider the process as independent production of the
squarks and their following decays. Thus, the calculation can be factorized into two [L: three?? two
decays! don’t now ] steps. [L: suggest to drop: , making analytical and numerical computations.]
[P: I would drop the sentence: The Born case is anyway straightforward also without narrow width
approximation, so it can be used to estimate the numerical effects of neglecting the subleading terms
in the expansion Γ/m → 0.][L: jep, we can put a note on our other paper: ”Will be presented
elsewhere..]
[L: drop: The main goal of this work is the study of differential distributions including higher order
effects.] Due to the scalar nature of the squark and thus the lack of spin correlations between pro-
duction stage and decay stages of the considered process, at LO eq. (2.3) can directly be generalized
to a complete differential form,
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COMBINATION

For all different combinations of light flavours and 
chiralities, weighted events for squark-squark 
production are produced in the LAB frame.

Weighted decay events are generated in the 
respective squark rest-frame.

“master formula”boost of decay events

Fully differential prediction of factorizable NLO 
contributions in NWA.
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NUMERICAL RESULTS
For SPS1a (14 TeV): Scale variation: µf = µr =(m/2,m,2m), m: average    mass 

Emiss
T

SPS1a ũL ũR d̃L d̃R g̃ χ̃0

1

mass (GeV) 563.6 546.7 569.0 546.6 608.5 97.0

Table 1: On-shell masses of the squarks, the gluino, and the lightest neutralino within the different SUSY

scenarios considered. All masses are given in GeV.

10.1.5 ũL ũR d̃L d̃R g̃ χ̃0

1

mass (GeV) 1437.7 1382.3 1439.7 1376.9 1568.6 291.3

Table 2: On-shell masses of the squarks, the gluino, and the lightest neutralino within the different SUSY

scenarios considered. All masses are given in GeV.

We present the analysis of the signature jj+ !ET (+X) via squark–squark production and direct
decay into the lightest neutralino, pp → q̃q̃′ → jjχ̃0

1χ̃
0
1(+X), in next-to-leading order QCD within

the framework of the minimal supersymmetric Standard Model.
We provide a consistent, fully differential calculation of NLO QCD factorizable corrections to the
given processes with on-shell squarks.
Clustering final states into partonic jets, we investigate the experimental inclusive signature jj +
!ET and we choose for illustration several benchmark scenarios. We compare resulting differential
distributions with leading-order approximation rescaled by a flat K-factor and examine a possible
impact for cut-and-count searches for supersymmetry at the LHC.
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(PDFs: CTEQ6.6 both for LO and NLO)
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Combining Production and a Decay Chain at NLO
We study the experimental signature

via squark-squark production and an 
attached EW decay chain.

2j + 2l + �ET (+X)

pp → q̃Lq̃
�
R → qχ̃0

1q
�l+l−χ̃0

1(+X)

p
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q̃
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The “golden” decay chain

q̃

q

χ̃0
2 χ̃0

1l̃∓L/R

l±n l∓f

•  Search for SUSY in “jets + OSSF leptons” channel
•  Possible to measure masses of intermediate sparticles from invariant      
mass distribution endpoints and shapes (         ,                  ,                ,... ).
•  Possible to measure spin of sparticles via charge asymmetries.

  [Smillie, Webber’05]

(a) (b)

Figure 11: Detector-level rescaled mass distributions for (a) jet + l+ (b) jet + l−, for the SUSY
mass spectrum in table 2. Dashed: SUSY. Solid/red: UED.

except at very high and low masses, where the asymmetry is the ratio of two vanishing

quantities.

(a) (b)

Figure 12: Detector-level charge asymmetries with respect to the jet + lepton rescaled invariant
mass, for the (a) UED and (b) SUSY mass spectra given above. Dashed: SUSY. Solid/red: UED.

7. Conclusions

We have presented results of a comparative study of spin correlations in models with

supersymmetry and universal extra dimensions. Complete results were obtained for a

decay chain that is likely to be important if either model is relevant at LHC energies.

The analytical expressions for two-particle invariant mass distributions in section 4 can be

used to test the models for any combination of masses and chirality of the new particles

involved in the decay chain. We presented numerical and graphical results for two particular

mass scenarios: one UED-like and one SUSY-like (SPS 1a). In the former case the near-

degeneracy of the mass spectrum of new particles would make it difficult to verify the spin
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SPS1a ũL ũR d̃L d̃R g̃ χ̃0
1

mass (GeV) 563.6 546.7 569.0 546.6 608.5 97.0

Table 1: On-shell masses of the squarks, the gluino, and the lightest neutralino within the different SUSY

scenarios considered. All masses are given in GeV.

10.1.5 ũL ũR d̃L d̃R g̃ χ̃0
1

mass (GeV) 1437.7 1382.3 1439.7 1376.9 1568.6 291.3

Table 2: On-shell masses of the squarks, the gluino, and the lightest neutralino within the different SUSY

scenarios considered. All masses are given in GeV.

We present the analysis of the signature jj+ �ET (+X) via squark–squark production and direct
decay into the lightest neutralino, pp → q̃q̃� → jjχ̃0
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the framework of the minimal supersymmetric Standard Model.
We provide a consistent, fully differential calculation of NLO QCD factorizable corrections to the
given processes with on-shell squarks.
Clustering final states into partonic jets, we investigate the experimental inclusive signature jj +
�ET and we choose for illustration several benchmark scenarios. We compare resulting differential
distributions with leading-order approximation rescaled by a flat K-factor and examine a possible
impact for cut-and-count searches for supersymmetry at the LHC.
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Comparison between NLO and LO corrections purely in the shapes of 
distributions.
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CONCLUSION

We provide a fully differential calculation of factorizable NLO QCD 
corrections in NWA for squark-squark production and different decays.

Knowledge of higher-order corrections to squark/gluino processes are 
important for precise description of physical observables and thus for 
setting accurate limits and even more for parameter determination. 

Fully differential NLO QCD predictions of combined production and decay 
for all squark/gluino channels are desirable (matched to a NLO PS). 

Study of further experimental signatures (monojets) under way. 

OUTLOOK

Discovery of SUSY in the next run of the LHC.
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CMSSM 10.1.5 (14 TeV) 
Comparison between NLO and LO rescaled by global K-factor

SPS1a ũL ũR d̃L d̃R g̃ χ̃0
1

mass (GeV) 563.6 546.7 569.0 546.6 608.5 97.0

Table 1: On-shell masses of the squarks, the gluino, and the lightest neutralino within the different SUSY

scenarios considered. All masses are given in GeV.

10.1.5 ũL ũR d̃L d̃R g̃ χ̃0
1

mass (GeV) 1437.7 1382.3 1439.7 1376.9 1568.6 291.3

Table 2: On-shell masses of the squarks, the gluino, and the lightest neutralino within the different SUSY

scenarios considered. All masses are given in GeV.

We present the analysis of the signature jj+ �ET (+X) via squark–squark production and direct
decay into the lightest neutralino, pp → q̃q̃� → jjχ̃0

1χ̃
0
1(+X), in next-to-leading order QCD within

the framework of the minimal supersymmetric Standard Model.
We provide a consistent, fully differential calculation of NLO QCD factorizable corrections to the
given processes with on-shell squarks.
Clustering final states into partonic jets, we investigate the experimental inclusive signature jj +
�ET and we choose for illustration several benchmark scenarios. We compare resulting differential
distributions with leading-order approximation rescaled by a flat K-factor and examine a possible
impact for cut-and-count searches for supersymmetry at the LHC.
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Figure 10: Differential distributions of benchmark point 10.1.5 at a center of mass energy
√
S = 14. In

the upper part of the plots we show in black LO, in red NLO and in blue LO distributions rescaled by the

ratio KNLO between the integrated NLO and LO results. In the lower part of the plots NLO corrections in

the shapes are shown, defined as the full NLO divided by the rescaled LO · KNLO distribution. From top

left to bottom right we show differential distributions in pT1 , p
T
2 , meff, "ET , HT (all in fb/GeV) and in αT

(in pba).
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Figure 9: Differential distributions of benchmark point SPS1a at a center of mass energy
√
S = 14. In

the upper part of the plots we show in black LO, in red NLO and in blue LO distributions rescaled by the

ratio KNLO between the integrated NLO and LO results. In the lower part of the plots NLO corrections in

the shapes are shown, defined as the full NLO divided by the rescaled LO · KNLO distribution. From top

left to bottom right we show differential distributions in pT1 , p
T
2 , meff, "ET , HT (all in fb/GeV) and in αT

(in pb).
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SPS1a ũL ũR d̃L d̃R g̃ χ̃0
1

mass (GeV) 563.6 546.7 569.0 546.6 608.5 97.0

Table 1: On-shell masses of the squarks, the gluino, and the lightest neutralino within the different SUSY

scenarios considered. All masses are given in GeV.

10.1.5 ũL ũR d̃L d̃R g̃ χ̃0
1

mass (GeV) 1437.7 1382.3 1439.7 1376.9 1568.6 291.3

Table 2: On-shell masses of the squarks, the gluino, and the lightest neutralino within the different SUSY

scenarios considered. All masses are given in GeV.

We present the analysis of the signature jj+ �ET (+X) via squark–squark production and direct
decay into the lightest neutralino, pp → q̃q̃� → jjχ̃0

1χ̃
0
1(+X), in next-to-leading order QCD within

the framework of the minimal supersymmetric Standard Model.
We provide a consistent, fully differential calculation of NLO QCD factorizable corrections to the
given processes with on-shell squarks.
Clustering final states into partonic jets, we investigate the experimental inclusive signature jj +
�ET and we choose for illustration several benchmark scenarios. We compare resulting differential
distributions with leading-order approximation rescaled by a flat K-factor and examine a possible
impact for cut-and-count searches for supersymmetry at the LHC.

pp → q̃q̃� → qq�χ̃0
1χ̃

0
1(+X)

M =
�

i,j∈{0,1}

Ni,j

[(k1 ± δ1,iq)2 −m2
q̃ + iΓq̃mq̃][(k2 ± δ1,jq)2 −m2

q̃ + iΓq̃mq̃]
=

�

i,j∈{0,1}

Mi,j (1)

M� =
�

i�,j�∈{0,1}

N �
i�,j�

[(k1 ± δ1,i�q)2 −m2
q̃ + iΓq̃mq̃][(k2 ± δ1,j�q)2 −m2

q̃ + iΓq̃mq̃]
=

�

i,j∈{0,1}

Mi�,j�

Mi,j = Mprod
Mdecay1Mdecay2

K1K2
M�

i,j = M�
prod

M�
decay1

M�
decay2

K1K2
(2)

|Mreal|2 = |Mreal,prod|2 + |Mreal,decay1|2 + |Mreal,decay2|2 +
2Re(Mreal,prod,M∗

real,decay1) + 2Re(Mreal,prod,M∗
real,decay2) + 2Re(Mreal,decay1,M∗

real,decay2)

Re(M∗
i,jM�

i,j) = Re(M∗
prodM�

prod)Re(M∗
decay1

M�
decay1

)Re(M∗
decay2

M�
decay2

)
1

|K1|2|K2|2

dσ(0+1)

NWA(pp → q̃q̃� → qχ̃0
1q

�χ̃0
1(+X)) =

1

Γ(0)
q̃ Γ(0)

q̃�

�
dσ(0)

pp→q̃q̃�dΓ
(0)
q̃→qχ̃0

1
dΓ(0)

q̃�→q�χ̃0
1

�
1−

Γ(1)
q̃

Γ(0)
q̃

−
Γ(1)
q̃�

Γ(0)
q̃�

�

+dσ(0)
pp→q̃q̃�dΓ

(1)
q̃→qχ̃0

1
dΓ(0)

q̃�→q�χ̃0
1
+ dσ(0)

pp→q̃q̃�dΓ
(0)
q̃→qχ̃0

1
dΓ(1)

q̃�→q�χ̃0
1

+dσ(1)
pp→q̃q̃�dΓ

(0)
q̃→qχ̃0

1
dΓ(0)

q̃�→q�χ̃0
1

�

qq� → q̃q̃� → qχ̃0
1q

�χ̃0
1

– 1 –

CMSSM 10.1.5 (14 TeV) 
Comparison between NLO and LO rescaled by global K-factor:
corrections purely in the shapes

 [f
b/

G
eV

]
T

/d
H

d

-210

-110

1 10.1.5; 14 TeV 
T
miss 2j + E’ q~ q~ pp 

LO
NLOLO x K

NLO

 [GeV]TH
0 500 1000 1500 2000 2500 3000

co
rr.

0.6
0.8

1
1.2
1.4

 [p
b]

T
/d

d -210

-110
10.1.5; 14 TeV 

T
miss 2j + E’ q~ q~ pp 

LO
NLOLO x K

NLO

T

0 0.5 1 1.5 2 2.5 3

co
rr.

0.6
0.8

1
1.2

3.2 Final event selection for SUSY search 3
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Figure 1: HT distribution after preselection, for data as well as for all standard model back-

grounds and two SUSY signal samples with parameter sets LM0 and LM1, normalized to an

integrated luminosity of 35 pb
−1

. The hatched area corresponds to the uncertainty in the SM

estimate as defined in Section 3.1. The SM distributions are only displayed for illustration

purposes, as they are the result of Monte Carlo simulation, while the actual estimate of the

background from SM processes in this search is based on data, as described in detail in Sec-

tion 4.

W + jets, Z → νν̄ + jets and tt̄ + jets events, which will be referred to collectively as the elec-

troweak (EWK) backgrounds in what follows, are simulated using MADGRAPH [32]. The SM

distribution, i.e. the sum of the QCD multijet and EWK distributions, is indicated in Fig. 1

as a hatched band representing the combined statistical and systematic uncertainties from the

jet energy scale and resolution. The expected HT distributions for two low-mass SUSY signal

points, LM0 and LM1, are overlaid. With the exception of tt̄, the SM processes fall off expo-

nentially over the entire HT range, whereas a broad peak at values of a few hundred of GeV

is expected for the signal models. The selection is tightened by requiring the HT of all jets to

exceed 350 GeV, thus ensuring large hadronic activity in the event. This requirement substan-

tially reduces the contributions from SM processes while maintaining a high efficiency for the

SUSY topologies considered.

3.2 Final event selection for SUSY search

Jet mismeasurements, caused by possible detection inefficiencies or by nonuniformities in the

calibration of the calorimeters, are the dominant source of large missing transverse energy E/T

in events from QCD multijet production. To control this background and to separate it from a

genuine missing energy signal, a variable that is robust against energy mismeasurements, αT,

is used. For events with two jets, αT, first introduced in Refs. [21, 33] and inspired by Ref. [34],

is defined as

αT = ET
j2 /MT,

where ET
j2 is the transverse energy of the less energetic of the two jets in the event and MT is

the transverse mass of the di-jet system, defined as
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SPS1a ũL ũR d̃L d̃R g̃ χ̃0
1

mass (GeV) 563.6 546.7 569.0 546.6 608.5 97.0

Table 1: On-shell masses of the squarks, the gluino, and the lightest neutralino within the different SUSY

scenarios considered. All masses are given in GeV.

10.1.5 ũL ũR d̃L d̃R g̃ χ̃0
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mass (GeV) 1437.7 1382.3 1439.7 1376.9 1568.6 291.3

Table 2: On-shell masses of the squarks, the gluino, and the lightest neutralino within the different SUSY

scenarios considered. All masses are given in GeV.

We present the analysis of the signature jj+ �ET (+X) via squark–squark production and direct
decay into the lightest neutralino, pp → q̃q̃� → jjχ̃0

1χ̃
0
1(+X), in next-to-leading order QCD within

the framework of the minimal supersymmetric Standard Model.
We provide a consistent, fully differential calculation of NLO QCD factorizable corrections to the
given processes with on-shell squarks.
Clustering final states into partonic jets, we investigate the experimental inclusive signature jj +
�ET and we choose for illustration several benchmark scenarios. We compare resulting differential
distributions with leading-order approximation rescaled by a flat K-factor and examine a possible
impact for cut-and-count searches for supersymmetry at the LHC.
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the ratio KNLO between the integrated NLO and LO results. In the lower part of the plots NLO corrections

in the shapes are shown, defined as the full NLO divided by the rescaled LO ·KNLO distribution. From top

left to bottom right we show differential distributions in pT1 , p
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2 , meff, "ET , HT (all in fb/GeV) and in αT

(in pba).
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In the upper part of the plots we show in black LO, in red NLO and in blue LO distributions rescaled by

the ratio KNLO between the integrated NLO and LO results. In the lower part of the plots NLO corrections

in the shapes are shown, defined as the full NLO divided by the rescaled LO ·KNLO distribution. From top

left to bottom right we show differential distributions in pT1 , p
T
2 , meff, "ET , HT (all in fb/GeV) and in αT
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p19MSSM1 ũL ũR d̃L d̃R g̃ χ̃0

1

mass (GeV) 339.6 394.8 348.3 392.7 414.7 299.1

Table 3: On-shell masses of the squarks, the gluino, and the lightest neutralino within the different SUSY

scenarios considered. All masses are given in GeV.

dσ
(1)
pp→q̃q̃′(+X) = dσvirtual+soft

pp→q̃q̃′(g) + dσcoll
pp→q̃q̃′(g) + dσhard

pp→q̃q̃′g + dσreal-quark
pp→q̃q̃′ q̄(′)

dΓ(1)
q̃→qχ̃0

1
= dΓvirtual+soft

q̃→qχ̃0
1(g)

+ dΓcoll
q̃→qχ̃0

1(g)
+ dΓhard

q̃→qχ̃0
1g

– 2 –

see also: Plehn, Rainwater, Skands ’07; 
Alwall, de Visscher, Maltoni ’08



Effect on cut-and-count searches performed by ATLAS.

5.3.3 Event rates

After investigating inclusive cross sections and differential distributions we now want to study
event rates, i.e., fractionally integrated differential distributions. In this way we want to quantify a
possible impact of our calculation on current searches for supersymmetry and future measurements
of event rates at the LHC.

In table 7 we list cross sections after applying cuts of eq. (5.4) and in table 8 cross sections after
applying cuts of eq. (5.5). We show LO and NLO cross sections for all three benchmark points and
all three energies together with resulting K-factors. For comparison we again list inclusive K-factors
of just production, already shown in table 5. From these results a fully differential description of
all squark and gluino channels including NLO effects in production and decay seems inevitable for
a conclusive interpretation of SUSY searches (or signals) at the LHC. For any study of compressed
spectra, like p19MSSM1, this seems to be eminent. Furthermore, as already suggested in [84] and
expected from the differential distributions shown in section 5.3.2, particularly interpretations based
on αT seem to be highly effected by higher order corrections.

benchmarkpoint Energy [TeV] N
(0)
ATLAS N

(0+1)
ATLAS KNATLAS Kpp→q̃q̃′

7 0.066pb 0.083pb 1.26 1.37
SPS1a 8 0.097pb 0.121pb 1.25 1.35

14 0.347pb 0.424pb 1.22 1.28

7 0.313 fb 0.503 fb 1.61 1.57
10.1.5 8 0.861 fb 1.344 fb 1.56 1.52

14 13.82 fb 19.77 fb 1.43 1.40

7 0.140 fb 20.76 fb ∼ 150 1.40
p19MSSM1 8 0.339 fb 37.96 fb ∼ 110 1.39

14 0.0044pb 0.264pb ∼ 60 1.34

Table 7: LO N (0)
ATLAS and NLO N (0+1)

ATLAS cross section predictions and K-factors KNATLAS for the three

benchmark scenarios SPS1a, 10.1.5, p19MSSM1 and center of mass energies
√
S = 7, 8, 14 TeV where the

cuts of eq. (5.4) are applied.

benchmarkpoint Energy [TeV] N
(0)
CMS N

(0+1)
CMS KNCMS Kpp→q̃q̃′

7 0.112pb 0.141pb 1.26 1.37
SPS1a 8 0.157pb 0.197pb 1.25 1.35

14 0.488pb 0.614pb 1.26 1.28

7 0.201pb 0.261pb 1.30 1.57
10.1.5 8 0.542 fb 0.674 fb 1.24 1.52

14 8.129 fb 8.884 fb 1.09 1.40

7 10−6 pb 0.095pb O(104) 1.40
p19MSSM1 8 10−6 pb 0.151pb O(104) 1.39

14 2 · 10−5 pb 0.687pb O(104) 1.34

Table 8: LO N (0)
ATLAS and NLO N (0+1)

ATLAS cross section predictions and K-factors KNATLAS for the three

benchmark scenarios SPS1a, 10.1.5, p19MSSM1 and center of mass energies
√
S = 7, 8, 14 TeV where the

cuts of eq. (5.5) are applied.
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realistic prediction on the level of partonic jets 5. In general we use a jet radius of R = 0.4, as
in the SUSY searches performed by the ATLAS collaboration [?]. CMS instead uses a radius of
R = 0.5 [?]. We employ R = 0.5 in the distributions and signatures used by CMS (i.e. particularly
the αT distribution as described below). Although we did not perform a systematic study, our
results seem to be independent of this choice. After performing the jet clustering we sort the
partonic jets by their pT and in the following anaysis we keep only jets with

pTj1/2 > 20 GeV |ηj | < 2.8, (5.2)

pTji > 50 GeV |ηj | < 3.0 (for CMS observables) . (5.3)

Cuts of eq. (5.2) are used everywhere but in the observables used specifically by CMS (αT , as
defined below), where cuts of eq. (5.3) .

Before showing results for the experimental signature 2j+ !ET (+X), in section 5.3.1 we compare
values for NLO total cross sections of squark-squark production, without decay included, with
results obtained using Prospino 2. In section 5.3.2 we investigate the effect of NLO corrections,
for different benchmark points, on the following differential distributions:

• the transverse momentum of the two hardest jets pT1/2,

• the pseudorapidity of the two hardest jets η1/2,

• the missing transverse energy !ET ,

• the effective mass meff =
∑

i=1,2
pTi + !ET ,

• the scalar sum of the pT of all jets (visible after cuts of eq. (5.3)), HT =
∑

i=1,2(,3)

pTi ,

• the invariant mass of the two hardest jets minv(jj),

• the cosine of the angle between the two hardest jets cosΘjj , which depends on the spin of the
produced particles and therefore might help to distinguish SUSY from other BSM models [10],

• cos Θ̂ = tanh
(

∆ηjj

2

)

, ηjj = η1 − η2, introduced in [9] as a possible observable for early spin

determination at the LHC,

• the αT variable, first defined in [80], where for hard real radiation events with three jets and
pT3 > 50 GeV, these jets are reclustered into two pseudojets by minimizing the difference of
the respective HT of the two pseudojets, as explained in [81, 82]. Furthermore, in all αT

distributions we require HT > 350 GeV as in [?].

Searches for sparticle production performed by ATLAS are based on pT, !ET and meff cuts; CMS
instead uses αT to reduce SM backgrounds. In section 5.3.3 we examine NLO corrections in the
resulting event rates after cuts. Explicitly we employ the following cuts used by ATLAS,

pTj1 > 130 GeV, pTj2 > 40 GeV, |ηj1/2 | < 2.8, ∆φ(j1/2, $!ET ) > 0.4, (5.4)

meff > 1 TeV, !ET /meff > 0.3,

in their two-jet analysis. Here,∆φ(j1/2, $!ET ) denotes the angular seperation between the two hardest
jets and the direction of missing energy. Instead the CMS signal region is defined as

pTj1/2 > 100 GeV, |ηj1 | < 2.5, |ηj2 | < 3.0, (5.5)

HT > 350 GeV, !HT / !ET < 1.25, αT > 0.55,

5With the term partonic jets we mean that the jet-clustering-algorithm has been applied to events as produced
from our calculation. No QCD showering or hadronization is included in the simulation.
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Effect on cut-and-count searches performed by CMS.

5.3.3 Event rates

After investigating inclusive cross sections and differential distributions we now want to study
event rates, i.e., fractionally integrated differential distributions. In this way we want to quantify a
possible impact of our calculation on current searches for supersymmetry and future measurements
of event rates at the LHC.

In table 7 we list cross sections after applying cuts of eq. (5.4) and in table 8 cross sections after
applying cuts of eq. (5.5). We show LO and NLO cross sections for all three benchmark points and
all three energies together with resulting K-factors. For comparison we again list inclusive K-factors
of just production, already shown in table 5. From these results a fully differential description of
all squark and gluino channels including NLO effects in production and decay seems inevitable for
a conclusive interpretation of SUSY searches (or signals) at the LHC. For any study of compressed
spectra, like p19MSSM1, this seems to be eminent. Furthermore, as already suggested in [84] and
expected from the differential distributions shown in section 5.3.2, particularly interpretations based
on αT seem to be highly effected by higher order corrections.

benchmarkpoint Energy [TeV] N
(0)
ATLAS N

(0+1)
ATLAS KNATLAS Kpp→q̃q̃′

7 0.066pb 0.083pb 1.26 1.37
SPS1a 8 0.097pb 0.121pb 1.25 1.35

14 0.347pb 0.424pb 1.22 1.28

7 0.313 fb 0.503 fb 1.61 1.57
10.1.5 8 0.861 fb 1.344 fb 1.56 1.52

14 13.82 fb 19.77 fb 1.43 1.40

7 0.140 fb 20.76 fb ∼ 150 1.40
p19MSSM1 8 0.339 fb 37.96 fb ∼ 110 1.39

14 0.0044pb 0.264pb ∼ 60 1.34

Table 7: LO N (0)
ATLAS and NLO N (0+1)

ATLAS cross section predictions and K-factors KNATLAS for the three

benchmark scenarios SPS1a, 10.1.5, p19MSSM1 and center of mass energies
√
S = 7, 8, 14 TeV where the

cuts of eq. (5.4) are applied.

benchmarkpoint Energy [TeV] N
(0)
CMS N

(0+1)
CMS KNCMS Kpp→q̃q̃′

7 0.112pb 0.141pb 1.26 1.37
SPS1a 8 0.157pb 0.197pb 1.25 1.35

14 0.488pb 0.614pb 1.26 1.28

7 0.201pb 0.261pb 1.30 1.57
10.1.5 8 0.542 fb 0.674 fb 1.24 1.52

14 8.129 fb 8.884 fb 1.09 1.40

7 10−6 pb 0.095pb O(104) 1.40
p19MSSM1 8 10−6 pb 0.151pb O(104) 1.39

14 2 · 10−5 pb 0.687pb O(104) 1.34

Table 8: LO N (0)
ATLAS and NLO N (0+1)

ATLAS cross section predictions and K-factors KNATLAS for the three

benchmark scenarios SPS1a, 10.1.5, p19MSSM1 and center of mass energies
√
S = 7, 8, 14 TeV where the

cuts of eq. (5.5) are applied.
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realistic prediction on the level of partonic jets 5. In general we use a jet radius of R = 0.4, as
in the SUSY searches performed by the ATLAS collaboration [?]. CMS instead uses a radius of
R = 0.5 [?]. We employ R = 0.5 in the distributions and signatures used by CMS (i.e. particularly
the αT distribution as described below). Although we did not perform a systematic study, our
results seem to be independent of this choice. After performing the jet clustering we sort the
partonic jets by their pT and in the following anaysis we keep only jets with

pTj1/2 > 20 GeV |ηj | < 2.8, (5.2)

pTji > 50 GeV |ηj | < 3.0 (for CMS observables) . (5.3)

Cuts of eq. (5.2) are used everywhere but in the observables used specifically by CMS (αT , as
defined below), where cuts of eq. (5.3) .

Before showing results for the experimental signature 2j+ !ET (+X), in section 5.3.1 we compare
values for NLO total cross sections of squark-squark production, without decay included, with
results obtained using Prospino 2. In section 5.3.2 we investigate the effect of NLO corrections,
for different benchmark points, on the following differential distributions:

• the transverse momentum of the two hardest jets pT1/2,

• the pseudorapidity of the two hardest jets η1/2,

• the missing transverse energy !ET ,

• the effective mass meff =
∑

i=1,2
pTi + !ET ,

• the scalar sum of the pT of all jets (visible after cuts of eq. (5.3)), HT =
∑

i=1,2(,3)

pTi ,

• the invariant mass of the two hardest jets minv(jj),

• the cosine of the angle between the two hardest jets cosΘjj , which depends on the spin of the
produced particles and therefore might help to distinguish SUSY from other BSM models [10],

• cos Θ̂ = tanh
(

∆ηjj

2

)

, ηjj = η1 − η2, introduced in [9] as a possible observable for early spin

determination at the LHC,

• the αT variable, first defined in [80], where for hard real radiation events with three jets and
pT3 > 50 GeV, these jets are reclustered into two pseudojets by minimizing the difference of
the respective HT of the two pseudojets, as explained in [81, 82]. Furthermore, in all αT

distributions we require HT > 350 GeV as in [?].

Searches for sparticle production performed by ATLAS are based on pT, !ET and meff cuts; CMS
instead uses αT to reduce SM backgrounds. In section 5.3.3 we examine NLO corrections in the
resulting event rates after cuts. Explicitly we employ the following cuts used by ATLAS,

pTj1 > 130 GeV, pTj2 > 40 GeV, |ηj1/2 | < 2.8, ∆φ(j1/2, $!ET ) > 0.4, (5.4)

meff > 1 TeV, !ET /meff > 0.3,

in their two-jet analysis. Here,∆φ(j1/2, $!ET ) denotes the angular seperation between the two hardest
jets and the direction of missing energy. Instead the CMS signal region is defined as

pTj1/2 > 100 GeV, |ηj1 | < 2.5, |ηj2 | < 3.0, (5.5)

HT > 350 GeV, !HT / !ET < 1.25, αT > 0.55,

5With the term partonic jets we mean that the jet-clustering-algorithm has been applied to events as produced
from our calculation. No QCD showering or hadronization is included in the simulation.
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SQUARKS AND GLUINOS AT THE LHC

ATLAS search regions

Requirement

Channel

A B C D E

2-jets 3-jets 4-jets 5-jets 6-jets

Emiss

T
[GeV] > 160

pT( j1) [GeV] > 130

pT( j2) [GeV] > 60

pT( j3) [GeV] > – 60 60 60 60

pT( j4) [GeV] > – – 60 60 60

pT( j5) [GeV] > – – – 60 60

pT( j6) [GeV] > – – – – 60

∆φ(jet,Emiss

T
)min [rad] > 0.4 (i = {1, 2, (3)}) 0.4 (i = {1, 2, 3}), 0.2 (pT > 40 GeV jets)

Emiss

T
/meff(N j) > 0.3/0.4/0.4 (2j) 0.25/0.3/– (3j) 0.25/0.3/0.3 (4j) 0.15 (5j) 0.15/0.25/0.3 (6j)

meff(incl.) [GeV] > 1900/1300/1000 1900/1300/– 1900/1300/1000 1700/–/– 1400/1300/1000

Table 1: Cuts used to define each of the channels in the analysis. The Emiss

T
/meff cut in any N jet channel

uses a value of meff constructed from only the leading N jets (indicated in parentheses). However, the final

meff(incl.) selection, which is used to define the signal regions, includes all jets with pT > 40 GeV. The

three Emiss

T
/meff(N j) and meff(incl.) selections listed in the final two rows denote the ‘tight’, ‘medium’

and ‘loose’ selections respectively. Not all channels include all three SRs.

(SR’s) with ‘tight’, ‘medium’ or ‘loose’ selections distinguished by requirements placed on Emiss

T
/meff

and meff(incl.). The SR’s requiring large values of Emiss

T
/meff are optimised for sensitivity to models with

small sparticle mass splittings, where the presence of initial state radiation jets may allow signal events to

be selected even in cases where the sparticle decay products are soft. The lower jet multiplicity channels

focus on models characterised by squark pair production with short decay chains, while those requiring

high jet multiplicity are optimised for gluino pair production and/or long cascade decay chains.

In Table 1, ∆φ(jet,Emiss

T
)min is the smallest of the azimuthal separations between Emiss

T
and the re-

constructed jets. For channels A and B, the selection requires ∆φ(jet,Emiss

T
)min > 0.4 radians using up

to three leading jets with pT > 40 GeV if present in the event. For the other channels an additional

requirement ∆φ(jet,Emiss

T
)min > 0.2 radians is placed on all jets with pT > 40 GeV. Requirements on

∆φ(jet,Emiss

T
)min and Emiss

T
/meff are designed to reduce the background from multi-jet processes.

Standard Model background processes contribute to the event counts in the signal regions. The

dominant sources are: W+jets, Z+jets, top quark pairs, single top quarks, and multiple jets. Diboson

production is a minor component. The majority of the W+jets background is composed of W → τν
events, or W → eν, µν events in which no electron or muon candidate is reconstructed. The largest

part of the Z+jets background comes from the irreducible component in which Z → νν̄ decays generate

large Emiss

T
. Top quark pair production followed by semi-leptonic decays, in particular tt̄ → bb̄τνqq

with the τ-lepton decaying hadronically, as well as single top quark events, can also generate large

Emiss

T
and pass the jet and lepton requirements at a non-negligible rate. The multi-jet background in

the signal regions is caused by misreconstruction of jet energies in the calorimeters leading to apparent

missing transverse momentum, as well as by neutrino production in semileptonic decays of heavy quarks.

Extensive validation of the Monte Carlo (MC) simulation against data has been performed for each of

these background sources and for a wide variety of control regions (CRs).

To estimate the backgrounds in a consistent and robust fashion, four control regions are defined for

each of the 12 signal regions, giving 48 CRs in total. The orthogonal CR event selections are designed to
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Figure 6: 95% CL exclusion limits for MSUGRA/CMSSM models with tan β = 10, A0 = 0 and µ > 0
presented (left) in the m0–m1/2 plane and (right) in the mg̃–mq̃ plane. Exclusion limits are obtained by
using the signal region with the best expected sensitivity at each point. The blue dashed lines show the
expected limits at 95% CL, with the light (yellow) bands indicating the 1σ excursions due to experimen-
tal uncertainties. Observed limits are indicated by medium (maroon) curves, where the solid contour
represents the nominal limit, and the dotted lines are obtained by varying the cross section by the the-
oretical scale and PDF uncertainties. Previous results from ATLAS [17] are represented by the shaded
(light blue) area. The theoretically excluded regions (green and blue) are described in Ref. [63].

Data from all the channels are used to set limits on SUSY models, taking the SR with the best
expected sensitivity at each point in several parameter spaces. A profile log-likelihood ratio test in com-
bination with the CLs prescription [59] is used to derive 95% CL exclusion regions. Exclusion limits are
obtained by using the signal region with the best expected sensitivity at each point. The nominal signal
cross section and the uncertainty are taken from an ensemble of cross section predictions using different
PDF sets and factorisation and renormalisation scales, as described in Ref. [52]. Observed limits are
calculated for both the nominal cross section, and ±1σ uncertainties. For each of these three individual
limits, the best signal region at each point is taken. Numbers quoted in the text are evaluated from the
observed exclusion limit based on the nominal cross section less one sigma on the theoretical uncertainty.
In Fig. 6 the results are interpreted in the tan β = 10, A0 = 0, µ > 0 slice of MSUGRA/CMSSM models
2. For the nominal cross sections, the best signal region is E-tight for high m0 values, C-tight for low m0
values and D-tight between the two. Results are presented in both the m0–m1/2 and mg̃–mq̃ planes. The
sparticle mass spectra and decay tables are calculated with SUSY-HIT [60] interfaced to SOFTSUSY [61]
and SDECAY [62].

An interpretation of the results is presented in Figure 7 as a 95% CL exclusion region in the (mg̃,mq̃)-
plane for a simplified set of SUSY models with mχ̃0

1
= 0. In these models the gluino mass and the masses

of the squarks of the first two generations are set to the values shown on the axes of the figure. All other
supersymmetric particles, including the squarks of the third generation, are decoupled.

In Fig. 8 limits are shown for three classes of simplified model in which only direct production of (a)
gluino pairs, (b) ‘light’-flavor squarks (of the first two generations) and gluinos or (c) light-flavor squark
pairs is kinematically possible, with all other superpartners, except for the neutralino LSP, decoupled.
This forces each light-flavor squark or gluino to decay directly to jets and an LSP. Cross sections are
evaluated assuming decoupled light-flavor squarks or gluinos in cases (a) and (c), respectively. In all
cases squarks of the third generation are decoupled. In case (b) the masses of the light-flavor squarks are

2Five parameters are needed to specify a particular MSUGRA/CMSSM model: the universal scalar mass, m0, the universal
gaugino mass m1/2, the universal trilinear scalar coupling, A0, the ratio of the vacuum expectation values of the two Higgs fields,
tan β, and the sign of the higgsino mass parameter, µ = ±.
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Figure 9: NLL K-factor for the total SUSY production rate at LHC with
√
s = 7TeV as a

function of the gluino mass mg̃ and average squark mass mq̃. The dashed line corresponds
to the most recent exclusion limit presented in [2].

to this is the squark-squark production process, where the effect of Coulomb corrections is
small. This particular behaviour originates from cancellations between the cross sections
for same-flavour squark production, where the repulsive colour-sextet channel is numeri-
cally dominant and gives rise to negative O(α2

s ln
2 β/β) corrections, and different-flavour

squark production, where the corresponding term is positive, due to the dominance of the
attractive colour-triplet channel.

For squark-antisquark, squark-gluino and gluino-gluino production, a significant portion
of the total Coulomb and soft-Coulomb corrections originates from bound-state effects
below threshold. These correspond to the difference between the NLL and NLLno BS (dot-
dashed purple) curves in the plots. For squark-antisquark and squark-gluino production
bound-state corrections amount to 2− 10% of the fixed-order NLO cross section, whereas
for gluino-gluino production they can be as large as 30%.

Figure 9 shows the NLL K-factor for the total SUSY production rate at the 7 TeV LHC
as a contour plot in the (mg̃, mq̃)-plane. The r-dependence of the total resummed cross
section arises from an interplay of the r-dependence of the single-process cross sections
and of the relative dominance of the four subprocesses for a given r. The largest K-
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NLL: soft + coulomb

3.1 Squark and gluino production at NLL

To illustrate how different classes of corrections contribute to the total cross section, we
introduce three different NLL implementations:

• NLL: our default implementation. Contains the full combined soft and Coulomb
resummation, Eq. (2.18), including bound-state contributions below threshold, Eq.
(2.17). For the soft scale we adopt the running scale given in Eqs. (2.28), (2.29).

• NLLno BS: as above, but without the inclusion of bound-state effects.

• NLLs+h: this implementation includes resummation of soft and hard logarithms only,
without Coulomb resummation. This is obtained using Eqs. (2.19) and (2.24).

The three NLL approximations defined above are always matched to the exact NLO results
computed with PROSPINO, according to (2.20). As input for the convolution with the
parton luminosity functions, Eq. (2.3), we adopt the MSTW08NLO PDF set [40] and
the associated strong coupling constant αs(MZ) = 0.1202. Unless otherwise specified, the
parameter r, defined as

r =
mg̃

mq̃
, (3.1)

is set to one.
We start presenting results for the NLL K-factor, defined as

KNLL =
σmatched

σNLO
, (3.2)

where σmatched is our matched result for one of the NLL implementations defined in the
beginning of this Section and σNLO the fixed-order NLO result obtained using PROSPINO.
The NLL-K-factor for LHC with 7 TeV centre-of-mass energy is plotted in Figure 7, for
the four light-squark/gluino production processes and the mass range mq̃ = mg̃ = 500-
2000GeV. The results for

√
s = 14 TeV and the mass range mq̃ = mg̃ = 500-3000GeV are

given in Figure 8. The NLL corrections for our default implementation (solid blue lines)
can be large, with corrections to the fixed-order NLO results of up to 120% in the upper
mass range for gluino-gluino production at 7 TeV. The higher-order effects are smaller, but
still sizeable, for the other three processes, due to the smaller colour charges involved in
squark-antisquark, squark-squark and squark-gluino production. Furthermore, for a fixed
SUSY mass the KNLL-factor decreases from 7 to 14 TeV, consistently with the expectation
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The effect of including Coulomb resummation and its interference with soft resumma-
tion is on average as large as (or even larger than) the effect of pure soft and hard cor-
rections, as can be seen comparing our default implementation NLL with NLLs+h (dashed
red lines). Pure soft contributions beyond O(αs) amount to 5 − 60% of the fixed-order
NLO result, depending on the mass and process considered, whereas pure Coulomb effects
and interference of soft and Coulomb corrections can amount to up to 60%. An exception
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Figure 9: NLL K-factor for the total SUSY production rate at LHC with
√
s = 7TeV as a

function of the gluino mass mg̃ and average squark mass mq̃. The dashed line corresponds
to the most recent exclusion limit presented in [2].

to this is the squark-squark production process, where the effect of Coulomb corrections is
small. This particular behaviour originates from cancellations between the cross sections
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cally dominant and gives rise to negative O(α2

s ln
2 β/β) corrections, and different-flavour

squark production, where the corresponding term is positive, due to the dominance of the
attractive colour-triplet channel.
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below threshold. These correspond to the difference between the NLL and NLLno BS (dot-
dashed purple) curves in the plots. For squark-antisquark and squark-gluino production
bound-state corrections amount to 2− 10% of the fixed-order NLO cross section, whereas
for gluino-gluino production they can be as large as 30%.

Figure 9 shows the NLL K-factor for the total SUSY production rate at the 7 TeV LHC
as a contour plot in the (mg̃, mq̃)-plane. The r-dependence of the total resummed cross
section arises from an interplay of the r-dependence of the single-process cross sections
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Higher Order Corrections to Production
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Figure 19: Tree-level branching ratios, (a)-(b), and corrections to the branching ratios,
(c)-(d), of bottom- and top-squarks as a function of the soft-SUSY-breaking gaugino mass
parameter M .

Although the QCD corrections are usually the largest ones, the EW and QCD corrections
can be of the same order in certain scenarios. For example in Fig. 19c the QCD corrected
BR(b̃1 → bχ0) is ∼ 5% larger than the tree-level one for M ∼ 200− 250 GeV, but the EW
corrections compensate most of this correction, and the final correction is less than 1%.

The effects of the mass-shifts are in general very small, except near the threshold
regions, where a given channel is permitted according to the tree-level masses prediction,
but it is closed when one uses the one-loop prediction for the masses. This is the case
in Fig. 19d. The decay channel t̃1 → bχ0

3 is open up to M $ 354 GeV according to the
tree-level prediction for the heaviest top-squark mass. However the negative corrections
to mt̃1 –table 1– enforce this channel to get closed for lighter M values, concretely, at
M $ 324 GeV including only the QCD corrections and at M $ 317 GeV including the full
corrections.

In Fig. 20 we show the branching ratios and its corrections as a function of the lightest

43
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Higher Order Corrections to Decay



All counterterms, but the one for the QCD coupling 
are renormalized according to the on-shell scheme. 

Choice of scheme for the renormalization of the QCD coupling is fixed 
by definition of      in the PDF distributions:        + 5 flavour scheme. αs MS

Using        and Dim. Reg. breaks supersymmetric Slavnov-Taylor 
identity, that relates the QCD coupling in the        QCD vertex and the           
     coupling in the        SQCD vertex.

MS
qqg

ĝs

Can be restored: [Beenakker et al. ’96; 
Hollik, Stöckinger ’01]

p

p

q̃

q̃
′

p19MSSM1 ũL ũR d̃L d̃R g̃ χ̃0

1

mass (GeV) 339.6 394.8 348.3 392.7 414.7 299.1

Table 3: On-shell masses of the squarks, the gluino, and the lightest neutralino within the different SUSY

scenarios considered. All masses are given in GeV.

dσ
(1)
pp→q̃q̃′(+X) = dσvirtual+soft

pp→q̃q̃′(g) + dσcoll
pp→q̃q̃′(g) + dσhard

pp→q̃q̃′g + dσreal-quark
pp→q̃q̃′ q̄(′)

dΓ(1)
q̃→qχ̃0

1
= dΓvirtual+soft

q̃→qχ̃0
1(g)

+ dΓcoll
q̃→qχ̃0

1(g)
+ dΓhard

q̃→qχ̃0
1g

δgs = gsδZgs (3)
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q̃→qχ̃0

1
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+ dΓcoll
q̃→qχ̃0
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q̃→qχ̃0
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dσ
(0)

NWA(pp → q̃q̃′ → qχ̃0
1q

′χ̃0
1(+X)) =

1

Γ(0)
q̃ Γ(0)

q̃′

[

dσ
(0)
pp→q̃q̃′dΓ

(0)
q̃→qχ̃0

1
dΓ(0)

q̃′→q′χ̃0
1

]

|M|2(sqq̃)

(sqq̃ −m2
g̃)

2 +m2
g̃Γ

2
g̃

−→
|M|2(sqq̃)

(sqq̃ −m2
g̃)

2 +m2
g̃Γ

2
g̃

−
|M|2(m2

g̃)

(sqq̃ −m2
g̃)

2 +m2
g̃Γ

2
g̃

. (4)

qq̃g̃
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Besides the dominating QCD contributions, there are also tree-level electroweak production chan-
nels [36, 43] with chargino and neutralino exchange, which can interfere with the QCD amplitude
providing a contribution to the cross-section of O(ααs). In principle these terms can be numerically
of similar importance as the NLO QCD O(α3

s) corrections we are investigating. For the present
study, the electroweak contributions are neglected.

3.2 NLO squark–squark production

The NLO QCD corrections to squark–squark production have been known for many years [24] and
an efficient public code (Prospino 2) is available for the calculation of total cross sections at NLO.
However, in order to study systematically the 2j + !ET (+X) signature emerging from production
of squark–squark pairs and subsequent decays into the lightest neutralino, also the complete dif-
ferential cross section is necessary. To this purpose, we perform an independent (re)calculation
of the NLO QCD corrections, where we treat the masses for q̃L, q̃R and all chirality and flavour
configurations independently. In [24] different squark chiralities are treated as mass degenerate and
NLO contribution are always summed over all chirality and flavour combinations.

NLO calculations involve, in intermediate steps, infrared and collinear divergences. Since our
calculation does not involve any diagrams with non-Abelian vertices, infrared singularities can be
regularized by a gluon mass (λ) . Collinear singularities, in analogy, can be regularized by a quark
mass (mq), that is kept at zero everywhere else in the calculation. The cancellation of these two
kinds of singularities is obtained by summing the virtual loop contributions and the real gluon
bremsstrahlung part, with subsequent mass factorization in combination with the choice of the
parton densities.

The complete NLO corrections to the differential cross section can be written symbolically in
the following way,

dσ(1)
pp→q̃q̃′(+X) = dσvirtual+soft

pp→q̃q̃′(g) + dσcoll
pp→q̃q̃′(g) + dσhard

pp→q̃q̃′g + dσreal-quark
pp→q̃q̃′ q̄(′)

. (3.5)

With dσvirtual+soft
pp→q̃q̃′(g) we denote the summed contributions from the renormalized virtual corrections

and soft gluon emission; dσcoll
pp→q̃q̃′(g) corresponds to initial state collinear gluon radiation including

the proper subtraction term for the collinear divergences; dσhard
pp→q̃q̃′g denotes the remaining hard

gluon emission outside the soft and collinear phase space regions. dσreal-quark
pp→q̃q̃′ q̄(′)

is the contribution
from real quark emission from additional quark–gluon initial states contributing at NLO.

Technically, the calculation of the loop corrections and real radiation contributions is performed
separately for every flavour and chirality combination, qiqj → q̃iaq̃jb, with the help of FeynArts [69]
and FormCalc [70,71]. Appendix A shows a collection of the contributing Feynman diagrams. Loop
integrals are numerically evaluated with LoopTools [70].

3.2.1 Virtual corrections and real gluon radiation

In the term dσvirtual+soft
pp→q̃q̃′(g) the virtual and soft contributions are added at the parton level, according

to

dσvirtual+soft
pp→q̃q̃′(g) =

∫ 1

τ0

dτ Lqq′ (τ) dσ̂
virtual+soft
qq′→q̃q̃′(g) (τ) ,

dσ̂virtual+soft
qq′→q̃q̃′(g) (τ) = dσ̂virtual

qq′→q̃q̃′ + dσ̂soft
qq′→q̃q̃′(g) . (3.6)

The fictitious gluon mass λ for infrared regularization cancels in the sum of dσ̂virtual
qq′→q̃q̃′ and dσ̂soft

qq′→q̃q̃′(g).

At NLO, UV finiteness requires renormalization by inclusion of appropriate counterterms, which
can be found explicitly in [39]. All mass and field renormalization constants are determined accord-
ing to the on-shell scheme. The renormalization of the QCD coupling constant (δgs = gs δZgs) has
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A. Diagrams of NLO corrections

Here, for completeness, we display all relevant diagrams used in our NLO calculation of squark-
squark production. The contribution of some of them vanish under the assumption mq = 0. For
example, this is the case for the 5th diagram on the 1st line when a != b; any helicity state of the
quark in the propagator can interact either with q̃ia or with q̃jb but not with both of them.
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Figure 11: Loop diagrams contributing to all flavour and chirality structures of squark–squark production.
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Figure 12: Loop diagrams contributing only for squarks with equal flavour.
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Figure 2: Resonant (a) and non-resonant (b) diagrams contributing to qig → q̃iaq̃jbq̄j .
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Figure 3: Resonant (a) and non-resonant (b) diagrams contributing to qjg → q̃iaq̃jbq̄i.

In the ”Prospino scheme” [24, 76] contributions from squared matrix elements with resonant
diagrams are eliminated in a different way. A small non-physical width is used to regularize and
subtract on-shell gluino-squark production with associated gluino decay. The ”Prospino scheme”
is well suited for calculations of production processes. It can not straightforwardly be extended to
calculations where decays and/or off-shell effects are included in all channels.

For the practical calculation of the real quark radiation contributions, one has to perform the
phase space integration over the final state quark. The squared non-resonant terms in eq. (3.14)
and eq. (3.15) lead to initial state collinear singularities. Again, these singular terms have to be
subtracted since they are factorized and absorbed into the PDFs. Like in the case of gluon radiation,
we divide the emission of a quark into a collinear and a non-collinear region (since no IR singularities
occur, a separation into soft and hard quark emission is not required),

dσreal-quark
q̃ia q̃jb q̄i/j

=
∑

k=i,j

1

1 + δi,j

[

dσcoll-quark
pp→q̃ia q̃jb q̄k

+ dσnoncoll-quark
pp→q̃ia q̃jb q̄k

]

. (3.16)

The non-collinear contribution

dσnoncoll-quark
pp→q̃ia q̃jb q̄k

=

∫ 1

τ0

dτ Lnoncoll-quark
ijk (τ) dσ̂qiqj→q̃ia q̃jb q̄k(τ) , (3.17)

contains Lnoncoll−quark
ijk (τ) as given in eq. (B.9). The collinear emission together with the subtraction

terms for the PDFs instead can be written as follows,

dσcoll-quark
pp→q̃ia q̃jb q̄k

= (δik + δjk)

∫ 1

τ0

dτ

∫ 1

τ

dx

x

∫ 1

x

dz

z
Lcoll-quark
ijk (τ, x, z) dσ̂coll-quark

qig→q̃ia q̃jb q̄k
(τ, z) ,

(3.18)

with Lijk(τ, x, z)coll-quark and dσ̂coll-quark
qig→q̃ia q̃jb q̄k

(τ, z) defined in eq. (B.7) and eq. (B.8) of Appendix B.
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is well suited for calculations of production processes. It can not straightforwardly be extended to
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For the practical calculation of the real quark radiation contributions, one has to perform the
phase space integration over the final state quark. The squared non-resonant terms in eq. (3.14)
and eq. (3.15) lead to initial state collinear singularities. Again, these singular terms have to be
subtracted since they are factorized and absorbed into the PDFs. Like in the case of gluon radiation,
we divide the emission of a quark into a collinear and a non-collinear region (since no IR singularities
occur, a separation into soft and hard quark emission is not required),
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ijk (τ) as given in eq. (B.9). The collinear emission together with the subtraction

terms for the PDFs instead can be written as follows,

dσcoll-quark
pp→q̃ia q̃jb q̄k

= (δik + δjk)

∫ 1

τ0

dτ

∫ 1

τ

dx

x

∫ 1

x

dz

z
Lcoll-quark
ijk (τ, x, z) dσ̂coll-quark

qig→q̃ia q̃jb q̄k
(τ, z) ,

(3.18)

with Lijk(τ, x, z)coll-quark and dσ̂coll-quark
qig→q̃ia q̃jb q̄k

(τ, z) defined in eq. (B.7) and eq. (B.8) of Appendix B.
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NLO production



Real quark radiation

non-resonant resonant

Γg̃

DS scheme

and usually:             numerically.       

[Binoth et. al.; ’11]

Γ → 0

p19MSSM1 ũL ũR d̃L d̃R g̃ χ̃0

1

mass (GeV) 339.6 394.8 348.3 392.7 414.7 299.1

Table 3: On-shell masses of the squarks, the gluino, and the lightest neutralino within the different SUSY

scenarios considered. All masses are given in GeV.

dσ
(1)
pp→q̃q̃′(+X) = dσvirtual+soft

pp→q̃q̃′(g) + dσcoll
pp→q̃q̃′(g) + dσhard

pp→q̃q̃′g + dσreal-quark
pp→q̃q̃′ q̄(′)

dΓ(1)
q̃→qχ̃0

1
= dΓvirtual+soft

q̃→qχ̃0
1(g)

+ dΓcoll
q̃→qχ̃0

1(g)
+ dΓhard

q̃→qχ̃0
1g

δgs = gsδZgs (3)

dσ
(0)

NWA(pp → q̃q̃′ → qχ̃0
1q

′χ̃0
1(+X)) =

1

Γ(0)
q̃ Γ(0)

q̃′

[

dσ
(0)
pp→q̃q̃′dΓ

(0)
q̃→qχ̃0

1
dΓ(0)

q̃′→q′χ̃0
1

]

|M|2(sqq̃)

(sqq̃ −m2
g̃)

2 +m2
g̃Γ

2
g̃

−→
|M|2(sqq̃)

(sqq̃ −m2
g̃)

2 +m2
g̃Γ

2
g̃

−
|M|2(m2

g̃)

(sqq̃ −m2
g̃)

2 +m2
g̃Γ

2
g̃

. (4)
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DR scheme



NLO total decay

analytical universal form factor,
 recalculated with independent regulators

[Djouadi, Hollik, Jünger; ’97]

NLO decay q̃

q

χ̃
0
1

4. Squark decay

4.1 Squark decay at LO

The LO decay width for a squark decaying into a neutralino and a quark, q̃ia → qiχ̃0
j , depends on

the flavour and chirality of the squark. For mq = 0 the width can be written as follows,

Γ(0)
q̃ia→qiχ̃0

j
=

α

4
mq̃ia

(

1−
m2

χ̃0
j

m2
q̃ia

)

f2
a . (4.1)

The coupling constants fa can be expressed in terms of the isospin Iq3L and the charge eq of the
quark, together with the neutralino mixing matrix (Njk) including the electroweak mixing angle
through sW = sin θW and cW = cos θW ,

fL =
√
2
[

eqN
′
j1 + (Iq3L − eqs

2
W )

1

cW sW
N ′

j2

]

, (4.2)

fR =−
√
2
[

eqN
′
j1 − eq

sW
cW

N ′
j2

]

, (4.3)

N ′
j1 =cWNj1 + sWNj2, N ′

j2 = −sWNj1 + cWNj2 . (4.4)

For a scalar particle decaying in its rest frame there is no preferred direction, and hence the dif-
ferential decay distribution is isotropic. For squark decays into neutralino and quark, the decay
distribution is thus simply given by

dΓ(0)
q̃→qχ̃0

j
=

1

4π
Γ(0)
q̃→qχ̃0

j
dcosθ dφ (4.5)

with polar angle θ and azimuth φ referring to the quark momentum.

4.2 NLO squark decay distribution

The differential decay width for q̃ → qχ̃0
j at NLO is obtained in analogy to the steps in section

3.2 by adding the virtual loop corrections and the real gluon bremsstrahlung contribution from the
soft, collinear, and hard non-collinear phase space regions, yielding the full NLO contribution in
the form

dΓ(1)
q̃→qχ̃0

j
= dΓvirtual

q̃→qχ̃0
j
+ dΓsoft

q̃→qχ̃0
j (g)

+ dΓcoll
q̃→qχ̃0

j (g)
+ dΓhard

q̃→qχ̃0
jg

. (4.6)

The virtual corrections dΓvirtual
q̃→qχ̃0

j
formq = 0 correspond to the two vertex loop diagrams in figure 4(a)

and the vertex counter term (indicated by the cross in figure 4(a)), which consists of the wave-
function renormalization constants of the external quark and squark line. As for the production
amplitudes, the renormalization constants are determined in the on-shell renormalization scheme.
Details on the vertex counter term can be found in [39], and the explicit analytical expression is
given in eq. (C.3) of Appendix C.

q̃ia

qi

χ̃0
j

g̃

qi

q̃ia
q̃ia

qi

χ̃0
j

g

q̃ia

qi
q̃i,a

qi

χ̃0
j

q̃

q

χ̃0
j g

q

q̃

q

χ̃0
j

g

q̃

(a) (b)

Figure 4: Loop and counterterm diagrams (a) and gluon radiation diagrams (b) for squark decays.
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