Next-to-leading order predictions for production and decay of squarks

in collaboration with Wolfgang Hollik and Davide Pagani

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Jonas M. Lindert

Max Planck Institut für Physik, München

Particle Physics School Munich Colloquium MPP, Munich, 11 January 2013

THE MSSM AT THE LHC

Often the lightest neutralino assumed to be the (stable) LSP → missing Energy

but also:

- more or less jets
- more or less leptons
- b-tagged jets
- in general
- many particles in the final state

THE MSSM AT THE LHC

Often the lightest neutralino assumed to be the (stable) LSP → missing Energy

but also:

- more or less jets
- more or less leptons
- b-tagged jets
- in general
- many particles in the final state

PRODUCTION

[Beenakker et al. '96]

PRODUCTION

DECAY

EXCLUSION LIMITS

EXCLUSION LIMITS

Why Higher Orders?

Corrections can be large!

Accurate exclusion limits.

Study & reduce theoretical uncertainties.

Necessary for parameter determination.

some examples

some examples

Higher Order Corrections to Decay

NLO EW

Guasch, Hollik, Sola '02

Higher Order Corrections to Decay

one example

Combining Production and Decay at NLO

We study the experimental signature

via squark-squark production and direct decay into the lightest neutralino.

 $2j + \not\!\!E_T(+X)$

 $pp \to \tilde{q}\tilde{q}' \to qq'\tilde{\chi}_1^0\tilde{\chi}_1^0(+X)$

Combining Production and Decay at NLO

 $qq' \to \tilde{q}\tilde{q}' \to q\tilde{\chi}_1^0 q'\tilde{\chi}_1^0$ LO in NWA

$$\Gamma_{\tilde{q}}/m_{\tilde{q}} \to 0 \quad \left| \hat{\sigma}_{\text{NWA}}^{(0)} = \hat{\sigma}^{(0)}(qq' \to \tilde{q}\tilde{q}') \times BR^{(0)}(\tilde{q} \to q\tilde{\chi}_1^0) \times BR^{(0)}(\tilde{q}' \to q'\tilde{\chi}_1^0) \right|$$

Hadronic differential LO cross section in NWA

$$d\sigma_{\text{NWA}}^{(0)}(pp \to \tilde{q}\tilde{q}' \to q\tilde{\chi}_1^0 q'\tilde{\chi}_1^0(+X)) = \frac{1}{\Gamma_{\tilde{q}}^{(0)}\Gamma_{\tilde{q}'}^{(0)}} \left[d\sigma_{pp \to \tilde{q}\tilde{q}'}^{(0)} d\Gamma_{\tilde{q} \to q\tilde{\chi}_1^0}^{(0)} d\Gamma_{\tilde{q}' \to q'\tilde{\chi}_1^0}^{(0)} \right]$$

Formal expansion in α_s :

Born

$$d\sigma_{\text{NWA}}^{(0+1)}(pp \to \tilde{q}\tilde{q}' \to q\tilde{\chi}_{1}^{0}q'\tilde{\chi}_{1}^{0}(+X)) = \frac{1}{\Gamma_{\tilde{q}}^{(0)}\Gamma_{\tilde{q}'}^{(0)}} \left[d\sigma_{pp \to \tilde{q}\tilde{q}'}^{(0)} d\Gamma_{\tilde{q} \to q\tilde{\chi}_{1}^{0}}^{(0)} d\Gamma_{\tilde{q}' \to q'\tilde{\chi}_{1}^{0}}^{(0)} \left(1 - \frac{\Gamma_{\tilde{q}}^{(1)}}{\Gamma_{\tilde{q}}^{(0)}} - \frac{\Gamma_{\tilde{q}'}^{(1)}}{\Gamma_{\tilde{q}'}^{(0)}} \right) \right]$$

$$NLO \ decay \qquad + d\sigma_{pp \to \tilde{q}\tilde{q}'}^{(0)} d\Gamma_{\tilde{q} \to q\tilde{\chi}_{1}^{0}}^{(1)} d\Gamma_{\tilde{q}' \to q'\tilde{\chi}_{1}^{0}}^{(0)} + d\sigma_{pp \to \tilde{q}\tilde{q}'}^{(0)} d\Gamma_{\tilde{q} \to q\tilde{\chi}_{1}^{0}}^{(0)} d\Gamma_{\tilde{q} \to q\tilde{\chi}_{1}^{0}}^{(0)} d\Gamma_{\tilde{q} \to q\tilde{\chi}_{1}^{0}}^{(0)} d\Gamma_{\tilde{q}' \to q'\tilde{\chi}_{1}^{0}}^{(0)} \right]$$

$$NLO \ production \qquad + d\sigma_{pp \to \tilde{q}\tilde{q}'}^{(1)} d\Gamma_{\tilde{q} \to q\tilde{\chi}_{1}^{0}}^{(0)} d\Gamma_{\tilde{q}' \to q'\tilde{\chi}_{1}^{0}}^{(0)} d\Gamma_{\tilde{q}'$$

"master formula"

COMBINATION

For all different combinations of light flavours and chiralities, weighted events for squark-squark production are produced in the LAB frame.

Weighted decay events are generated in the respective squark rest-frame.

boost of decay events + "master formula"

Fully differential prediction of factorizable NLO contributions in NWA.

NUMERICAL RESULTS

For SPS1a (14 TeV): Scale variation: $\mu_f = \mu_r = (m/2, m, 2m)$, m: average \tilde{q} mass

SPS1a	$ ilde{u}_L$	$ ilde{u}_R$	$ ilde{d}_L$	$ ilde{d}_R$	ilde g	$ ilde{\chi}_1^0$	(PDFs: CTEO6 6 both for LO and NLO)
mass (GeV)	563.6	546.7	569.0	546.6	608.5	97.0	

Combining Production and a Decay Chain at NLO

We study the experimental signature

via squark-squark production and an attached EW decay chain.

$$2j + 2l + \not\!\!E_T(+X)$$

$$pp \to \tilde{q}_L \tilde{q}'_R \to q \tilde{\chi}^0_1 q' l^+ l^- \tilde{\chi}^0_1 (+X)$$

The "golden" decay chain

- Search for SUSY in "jets + OSSF leptons" channel
- Possible to measure **masses** of intermediate sparticles from invariant mass distribution endpoints and shapes $(m_{jll}, m_{jl(high)}, m_{jl(low)}, \dots)$.
- Possible to measure **spin** of sparticles via charge asymmetries.

Comparison between NLO and LO corrections purely in the **shapes** of distributions.

CONCLUSION

Knowledge of higher-order corrections to squark/gluino processes are important for precise description of physical observables and thus for setting **accurate limits** and even more for **parameter determination**.

We provide a fully differential calculation of factorizable NLO QCD corrections in NWA for squark-squark production and different decays.

OUTLOOK

Study of further experimental signatures (monojets) under way.

Fully differential NLO QCD predictions of combined production and decay for all squark/gluino channels are desirable (matched to a NLO PS).

Discovery of SUSY in the next run of the LHC.

h

h

k

S

CMSSM 10.1.5 (14 TeV) Comparison between NLO and LO rescaled by global K-factor: corrections purely in the **shapes**

10.1.5	$ ilde{u}_L$	$ ilde{u}_R$	$ ilde{d}_L$	$ ilde{d}_R$	$ ilde{g}$	$ ilde{\chi}^0_1$
mass (GeV)	1437.7	1382.3	1439.7	1376.9	1568.6	291.3

CMSSM 10.1.5 (14 TeV) Comparison between NLO and LO rescaled by global K-factor: corrections purely in the **shapes**

10.1.5	$ ilde{u}_L$	$ ilde{u}_R$	$ ilde{d}_L$	$ ilde{d}_R$	$ ilde{g}$	$ ilde{\chi}^0_1$
mass (GeV)	1437.7	1382.3	1439.7	1376.9	1568.6	291.3

2j - signal region:

$$p_{j_1}^{\mathrm{T}} > 130 \text{ GeV}, \ p_{j_2}^{\mathrm{T}} > 40 \text{ GeV}, \ |\eta_{j_{1/2}}| < 2.8, \ \Delta \phi(j_{1/2}, \not{\!\!E_T}) > 0.4,$$

 $m_{\mathrm{eff}} > 1 \text{ TeV}, \ \not{\!\!E_T}/m_{\mathrm{eff}} > 0.3,$

benchmarkpoint	Energy [TeV]	$N_{ m ATLAS}^{(0)}$	$N_{ m ATLAS}^{(0+1)}$	$K_{N_{ m ATLAS}}$	$K_{pp ightarrow ilde{q} ilde{q}'}$
	7	0.066 pb	0.083 pb	1.26	1.37
SPS1a	8	$0.097\mathrm{pb}$	0.121 pb	1.25	1.35
	14	0.347 pb	$0.424\mathrm{pb}$	1.22	1.28
	7	0.313 fb	$0.503{ m fb}$	1.61	1.57
10.1.5	8	$0.861{ m fb}$	$1.344\mathrm{fb}$	1.56	1.52
	14	$13.82\mathrm{fb}$	$19.77\mathrm{fb}$	1.43	1.40
	7	0.140 fb	$20.76\mathrm{fb}$	~ 150	1.40
p19MSSM1	8	$0.339\mathrm{fb}$	$37.96\mathrm{fb}$	~ 110	1.39
	14	0.0044 pb	$0.264\mathrm{pb}$	~ 60	1.34
				1	

differential combined NLO

flat K-factor of just production

Effect on cut-and-count searches performed by CMS.

 α_T - signal region:

$p_{j_{1/2}}^{\mathrm{T}} > 100 \text{ GeV}, \ |\eta_{j_1}| < 2.5, \ |\eta_{j_2}| < 3.0,$ $H_T > 350 \text{ GeV}, \ H_T/E_T < 1.25, \ \alpha_T > 0.55,$

benchmarkpoint	Energy [TeV]	$N_{ m CMS}^{(0)}$	$N_{ m CMS}^{(0+1)}$	$K_{N_{ m CMS}}$	$K_{pp ightarrow ilde{q} ilde{q}'}$
	7	0.112 pb	0.141 pb	1.26	1.37
SPS1a	8	$0.157\mathrm{pb}$	$0.197\mathrm{pb}$	1.25	1.35
	14	$0.488\mathrm{pb}$	$0.614\mathrm{pb}$	1.26	1.28
	7	0.201 pb	$0.261\mathrm{pb}$	1.30	1.57
10.1.5	8	$0.542\mathrm{fb}$	$0.674{ m fb}$	1.24	1.52
	14	$8.129\mathrm{fb}$	$8.884\mathrm{fb}$	1.09	1.40
	7	$10^{-6}{\rm pb}$	$0.095\mathrm{pb}$	$\mathcal{O}(10^4)$	1.40
p19MSSM1	8	$10^{-6}{\rm pb}$	$0.151\mathrm{pb}$	$\mathcal{O}(10^4)$	1.39
	14	$2 \cdot 10^{-5} \mathrm{pb}$	$0.687\mathrm{pb}$	$\mathcal{O}(10^4)$	1.34

flat K-factor of just production

	Channel							
Requirement	А	В	С	D	Е			
	2-jets	3-jets	4-jets	5-jets	6-jets			
$E_{\rm T}^{\rm miss}[{\rm GeV}] >$	160							
$p_{\rm T}(j_1) [{\rm GeV}] >$	130							
$p_{\rm T}(j_2) [{\rm GeV}] >$	60							
$p_{\rm T}(j_3) [{\rm GeV}] >$	_	60	60	60	60			
$p_{\rm T}(j_4) [{\rm GeV}] >$	_	_	60	60	60			
$p_{\mathrm{T}}(j_5) [\mathrm{GeV}] >$	_	_	_	60	60			
$p_{\rm T}(j_6) [{\rm GeV}] >$	_	_	_	_	60			
$\Delta \phi$ (jet, $\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}$) _{min} [rad] >	$0.4 (i = \{1$, 2, (3)})	3}), $0.2 (p_{\rm T})$	> 40 GeV jets)				
$E_{\rm T}^{\rm miss}/m_{\rm eff}(Nj) >$	0.3/0.4/0.4 (2j)	0.25/0.3/- (3j)	0.25/0.3/0.3 (4j)	0.15 (5j)	0.15/0.25/0.3 (6j)			
$m_{\rm eff}({\rm incl.}) [{\rm GeV}] >$	1900/1300/1000	1900/1300/-	1900/1300/1000	1700/-/-	1400/1300/1000			

ATLAS search regions

Higher Order Corrections to Decay

700

350

U

Λ

All counterterms, but the one for the QCD coupling $\delta g_s = g_s \delta Z_{g_s}$ are renormalized according to the **on-shell** scheme.

Choice of scheme for the renormalization of the QCD coupling is fixed by definition of α_s in the PDF distributions: \overline{MS} + 5 flavour scheme.

$$\delta Z_{g_s} = -\frac{\alpha_s}{4\pi} \Big[\Delta \frac{\beta_0}{2} + \frac{1}{3} \log \frac{m_t^2}{\mu_F^2} + \log \frac{m_{\tilde{g}}^2}{\mu_F^2} + \frac{1}{12} \sum_{\tilde{q}} \log \frac{m_{\tilde{q}}^2}{\mu_F^2} \Big]$$

Using \overline{MS} and Dim. Reg. breaks supersymmetric Slavnov-Taylor identity, that relates the QCD coupling in the qqg QCD vertex and the \hat{g}_s coupling in the $q\tilde{q}\tilde{g}$ SQCD vertex.

Can be restored:
$$\delta Z_{\hat{g}_s} = \delta Z_{g_s} + \frac{\alpha_s}{3\pi}$$
 [Beenakker et al. '96; Hollik, Stöckinger '01]

NLO production

 $d\sigma_{pp\to\tilde{q}\tilde{q}'(+X)}^{(1)} = d\sigma_{pp\to\tilde{q}\tilde{q}'(q)}^{\text{virtual+soft}} + d\sigma_{pp\to\tilde{q}\tilde{q}'(g)}^{\text{coll}} + d\sigma_{pp\to\tilde{q}\tilde{q}'g}^{\text{hard}} + d\sigma_{pp\to\tilde{q}\tilde{q}'\bar{q}'g}^{\text{real-quark}} + d\sigma_{pp\to\tilde{q}\tilde{q}'\bar{q}'g}^{\text{virtual+soft}} + d\sigma_{pp\to\tilde{q}\tilde{q}'\bar{q}'g}^{\text{virtual+soft}} + d\sigma_{pp\to\tilde{q}\tilde{q}'\bar{q}'g}^{\text{hard}} + d\sigma_{pp\to\tilde{q}\tilde{q}'\bar{q}'g}^{\text{real-quark}}$

and usually: $\Gamma \to 0$ numerically.

NLO total decay

$$\Gamma_{\tilde{q}\to q\tilde{\chi}_{j}^{0}}^{(0+1)} = \Gamma^{(0)} \left[1 + \frac{4}{3} \frac{\alpha_{s}}{\pi} F^{QCD} \left(\frac{m_{\tilde{\chi}_{j}^{0}}}{m_{\tilde{q}}}, \frac{m_{\tilde{q}}}{m_{\tilde{g}}} \right) \right]$$

[Djouadi, Hollik, Jünger; '97]

analytical universal form factor, recalculated with independent regulators