

Neslihan Becerici-Schmidt, Allen Caldwell, Bela Majorovits

for the GERDA Collaboration

Max-Planck-Institut für Physik, München

Particle Physics School Munich Colloquium, 8 February 2013

MAX-PLANCK-GESELLSCHAFT

Outline

- Motivation of the GERDA experiment: Search for 0vββ decay.
- Experimental setup and data from the first phase of the experiment.
- Analysis of the Phase I data:
 - modeling of the individual background components
 - decomposition of the background spectrum.

Motivation

GERDA experiment is searching for the neutrinoless double beta (0vββ) decay of ⁷⁶Ge.

Neutrino accompanied double beta decay $2\nu\beta\beta$: (A, Z) \rightarrow (A, Z+2) + 2e⁻ + $2\overline{\nu}_{e}$

Neutrinoless double beta decay

 $0\nu\beta\beta$: (A, Z) \rightarrow (A, Z+2) + 2e⁻

 \rightarrow SM process

→ Observed for eleven isotopes $\Rightarrow T_{1/2} \sim (10^{19} - 10^{24}) \text{ yr}$

GERDA result [arXiv:1212.3210v1] (2012) $T_{1/2}$ (⁷⁶Ge) = (1.8 +0.14 -0.10) 10²¹ yr

 \rightarrow Rarest decay measured in lab

- → Non SM process ⇒ Lepton number violation: Δ L = 2
- \rightarrow Nature of neutrino: $\mathbf{v} = \mathbf{v} \Leftrightarrow$ Majorana?
- \rightarrow Determination of effective Majorana v mass $(T_{1/2}\)^{\text{-1}} \propto <\!\!m_{\beta\beta}\!\!>^2$

Motivation

GERDA experiment is searching for the neutrinoless double beta (0vββ) decay of ⁷⁶Ge.

Experimental signal of 0vββ:

excess at the Q value of $\beta\beta$ decay $\rightarrow Q_{\beta\beta}~(^{76}Ge)$ = 2039 keV

0vββ decay is a very rare process ($T_{1/2} > 10^{25}$ y)

sensitivity on
$$\mathsf{T}_{1/2} \propto \kappa \cdot rac{N_A}{M_A} \cdot \epsilon \cdot \sqrt{rac{M \cdot t}{b \cdot \Delta E}}$$

GERDA Phase I: $T_{1/2} > 2 \times 10^{25}$ y \rightarrow test the claim

GERDA Phase II: $T_{1/2} > 10^{26} \text{ y} \rightarrow \text{higher sensitivity}$ $\Rightarrow \text{Lower BI} \Rightarrow \text{Background characterization}$ & suppression

- \Rightarrow Large exposure $(M \cdot t)$
- ⇒ High fraction of ⁷⁶Ge (κ) isotopic enrichment ~ 86%
- \Rightarrow Low background in the ROI (b)
- ⇒ Good energy resolution (ΔE) HPGe: ~0.2% @ Q_{ββ} = 2039 keV
- ⇒ High signal detection efficiency (ϵ) 4 ~ 85-95% (source = detector)

Experimental setup

- Underground location: @ LNGS of INFN, Italy
 cosmic ray induced muon flux reduced by a factor of 10⁶
 + active muon veto
- Novel idea: HPGe detectors directly submerged in LAr cooling & high purity shield
- Minimal amount of screened material in the vicinity of the HPGe detectors

GERDA Phase-I data-taking

started on November 2011

GERDA Phase-I data

The data set used in this work is taken between 9 November 2011 and 5 January 2013

- \rightarrow total live DAQ time: 340.96 days
- \rightarrow total mass of the considered 6 ^{enr}Ge-coax detectors: 14.63 kg
- \rightarrow total exposure: 13.66 kg·y

^{enr}Ge-coax detector of Phase I

The range of alpha particles with energies 4 MeV to 9 MeV \rightarrow 14 μ m – 41 μ m in Ge \rightarrow 34 μ m – 113 μ m in LAr

Ra-226 (
$$E_a = 4.8$$
 MeV,
 $T_{1/2} = 1600$ y)
Rn-222 ($E_a = 5.5$ MeV,
 $T_{1/2} = 3.8$ d)
Po-218 ($E_a = 6.0$ MeV,
 $T_{1/2} = 183$ s)
Pb-214 ($T_{1/2} = 0.45$ h)
Bi-214 ($T_{1/2} = 0.45$ h)
Bi-214 ($E_a = 7.7$ MeV,
 $T_{1/2} = 164$ µs)
Pb-210 ($T_{1/2} = 22.3$ y)
Bi-210 ($T_{1/2} = 5.01$ d)
Po-210 ($E_a = 5.3$ MeV,
 $T_{1/2} = 138.4$ d)
Pb-206 (stable)

8

Events with 3500 keV< E < 5300 keV in sum ^{enr}Ge-coax

Statistical analysis procedure:

Event rate distribution of events with 3500 keV< E < 5300 keV in sum ^{enr}Ge-coax **Model: exponentially decaying event rate**

- Fit the distribution with an exponential function
- Maximized quantity posterior probablitiy:

etion
$$N(t) = N_0 \cdot e^{-ln2 t/T_{1/2}}$$
 half-life $\mathbf{T}_{1/2}$
initial rate \mathbf{N}_0
 $P(\vec{\lambda}|\vec{n}) \propto P(\vec{n}|\vec{\lambda})P_0(\vec{\lambda})$

- Set a prior on the half life parameter: $P_0(T_{1/2}) = Gaus(138.4, 0.2)$ half-life of ²¹⁰Po

- Likelihood:

$$P(\vec{n}|\vec{\lambda}) = \prod_{i} P(n_i|\lambda_i) = \prod_{i} \frac{e^{-\lambda_i}\lambda_i^{n_i}}{n_i!}$$

n_i: raw number of counts in i-th bin
(not scaled, not corrected for livetime fraction) *λ_i*: expectation in the i-th bin
corrected with the live time fraction in that bin

$$\lambda_i = \epsilon_i \int_{(i-1)\Delta t}^{i\Delta t} N_0 \cdot e^{-\ln 2t/T_{1/2}} dt$$

Event rate distribution of events with 3500 keV< E < 5300 keV in sum ^{enr}Ge-coax Model: exponentially decaying event rate

Colored probability intervals:

R. Aggarwal and A. Caldwell, Eur. Phys. J. Plus 127 24 (2012)

Event rate distribution of events with 3500 keV< E < 5300 keV in sum ^{enr}Ge-coax Model: exponential + constant rate

Event rate distribution of events with E > 5300 keV in sum ^{enr}Ge-coax **Model: constant rate**

Results stable wrt. choice of histogram binning.

^{enr}Ge-coax detector of Phase I

Simulated sources to model the energy spectrum:

1) Po-210 ($E_{\alpha} = 5.3$ MeV) decays on the p+ contact surface (thin dead layer)

2) Ra-226 & daughters on the p+ contact surface (thin dead layer) { Ra-226 ($E_{\alpha} = 4.8$ MeV) Rn-222 ($E_{\alpha} = 5.5$ MeV) Po-218 ($E_{\alpha} = 6.0$ MeV) Pb-214 Bi-214 Po-214 ($E_{\alpha} = 7.7$ MeV) 3) Rn-222 & daugters decay very close to the p+ contact surface (inLAr) { Rn-222 ($E_{\alpha} = 5.5 \text{ MeV}$) Po-218 ($E_{\alpha} = 6.0 \text{ MeV}$) Pb-214 Bi-214 Po-214 ($E_{\alpha} = 7.7 \text{ MeV}$) }

All simulations for different DL thicknesses (100nm...1 μ m) ₁₄

MC simulation of possible scenarios in GEANT4 based MaGe framework.

 \rightarrow important parameter: thickness of the dead layer

Po-210 ($E_{\alpha} = 5.3$ MeV) on p+ surface

Rn-222 & daugters in LAr close to p+ surface

Maximum likelihood fit of the data from sum enrGe-coax with the simulated spectra • Fit window: (3500 – 7500) keV \rightarrow divided to 80 bins with each bin 50 keV

$$P(\vec{n}|\vec{\lambda}) = \prod_{i} P(n_i|\lambda_i) = \prod_{i} \frac{e^{-\lambda_i}\lambda_i^{n_i}}{n_i!}$$

$$\lambda_{i} = \sum \lambda_{i,M} = \lambda_{i,Po210sur} + \lambda_{i,Ra226sur} + \lambda_{i,Rn222sur} + \lambda_{i,Po218sur} + \lambda_{i,Po214sur} + \lambda_{i,Rn222LAr} + \lambda_{i,Po218LAr} + \lambda_{i,Po214LAr}$$

$$\lambda_{i,M} = N_M \int_{\Delta E_i} f_M(E) dE$$
15

Data from the sum ^{enr}Ge-coax detectors superimposed with the best fit model.

- fit window: (3500 7500) keV
- p-value of the fit: 0.7
- 80 bins with 50 keV width
- Out of 80 data points $\sim74\%$ in the green and $\sim98\%$ in the yellow band

Data from the sum ^{enr}Ge-coax detectors superimposed with the best fit model.

- fit window: (3500 7500) keV
- p-value of the fit: 0.7
- 80 bins with 50 keV width
- Out of 80 data points $\sim74\%$ in the green and $\sim98\%$ in the yellow band

Extrapolation of the best fit model to the region of interest (ROI = 160 keV window around $Q_{\beta\beta}$)

fit window [keV]	3500 - 7500			4000 - 7500		
bin width [keV]	25	50	100	25	50	100
p-value	0.54	0.71	0.85	0.51	0.77	0.87
counts in ROI						
210 Po on surface	1.391	1.385	1.400	1.396	1.387	1.412
226 Ra on surface	0.043	0.047	0.044	0.045	0.049	0.045
222 Rn in LAr	3.217	3.227	3.317	2.866	2.871	2.956
total	4.651	4.659	4.761	4.306	4.305	4.412

18

Decomposition of the background spectrum

Data from the sum ^{enr}Ge-coax detectors superimposed with the best fit model.

 \rightarrow Model of the individual background components obtained through MC simulations.

- fit window: (570 7500) keV
- p-value of the fit: 0.3
- 231 bins with 30 keV width
- out of 231 data points ~ 73% in the green and ~ 97% in the yellow band

Decomposition of the background spectrum

Data from the sum ^{enr}Ge-coax detectors superimposed with the best fit model.

 \rightarrow Model of the individual background components obtained through MC simulations.

- fit window: (570 7500) keV
- p-value of the fit: 0.3
- 231 bins with 30 keV width

• out of 231 data points ~ 73% in the green and ~ 97% in the yellow band

Decomposition of the background spectrum

Data from the sum ^{enr}Ge-coax detectors superimposed with the best fit model.

 \rightarrow Model of the individual background components obtained through MC simulations.

- fit window: (570 7500) keV
- p-value of the fit: 0.3
- 231 bins with 30 keV width

• out of 231 data points ~ 73% in the green and ~ 97% in the yellow band

Conclusion

- Physics data-taking of GERDA Phase I ongoing.
- Blind analysis: will be opened when a sufficient exposure is acquired.
- Background decomposition aroud Q_{ββ}: promising results
 - \rightarrow understanding the background and mitigating it further in Phase II
 - \rightarrow estimation of the expected number of background events in the signal region.

Backup

