Non-geometry in string theory

based on 1211.6437 in collaboration with
D. Andriot, M. Larfors and D. Lüst

Peter Patalong

Max-Planck-Institute for Physics
Arnold-Sommerfeld-Center for Theoretical Physics
Munich

Particle Physics School Colloquium
March 15 ${ }^{\text {th }}, 2013$

Basic idea

What is non-geometry?

Basic idea

What is non-geometry?

Innocent idea:

1. String theory as a field theory with fields $X^{\mu}(\tau, \sigma)$
2. Canonical quantisation: $\left[X^{\mu}, \Pi^{\nu}\right]=\mathrm{i}$

Basic idea

What is non-geometry?

Innocent idea:

1. String theory as a field theory with fields $X^{\mu}(\tau, \sigma)$
2. Canonical quantisation: $\left[X^{\mu}, \Pi^{\nu}\right]=\mathrm{i}$
3. T-duality to a non-geometric situation: $X^{\mu} \rightarrow Z^{\mu}$

Basic idea

What is non-geometry?

Innocent idea:

1. String theory as a field theory with fields $X^{\mu}(\tau, \sigma)$
2. Canonical quantisation: $\left[X^{\mu}, \Pi^{\nu}\right]=\mathrm{i}$
3. T-duality to a non-geometric situation: $X^{\mu} \rightarrow Z^{\mu}$
4. What are the commutators $\left[Z^{\mu}, Z^{\nu}\right]$?

String theory as a field theory

- Consider a two-dimensional field theory with fields

$$
X^{\mu}: \Sigma \rightarrow T^{3}, \quad(\tau, \sigma) \mapsto X^{\mu}(\tau, \sigma)
$$

String theory as a field theory

- Consider a two-dimensional field theory with fields

$$
X^{\mu}: \Sigma \rightarrow T^{3}, \quad(\tau, \sigma) \mapsto X^{\mu}(\tau, \sigma)
$$

and an action

$$
S=-\frac{1}{4 \pi \alpha^{\prime}} \int_{\Sigma} \mathrm{d}^{2} \sigma\left(G_{\mu \nu}(X) \eta^{\alpha \beta}+B_{\mu \nu}(X) \varepsilon^{\alpha \beta}\right) \partial_{\alpha} X^{\mu} \partial_{\beta} X^{\nu}
$$

String theory as a field theory

- Consider a two-dimensional field theory with fields

$$
X^{\mu}: \Sigma \rightarrow T^{3}, \quad(\tau, \sigma) \mapsto X^{\mu}(\tau, \sigma)
$$

and an action

$$
S=-\frac{1}{4 \pi \alpha^{\prime}} \int_{\Sigma} \mathrm{d}^{2} \sigma\left(G_{\mu \nu}(X) \eta^{\alpha \beta}+B_{\mu \nu}(X) \varepsilon^{\alpha \beta}\right) \partial_{\alpha} X^{\mu} \partial_{\beta} X^{\nu}
$$

- Define three-dimensional torus as "target space"

$$
X^{\mu}(\tau, \sigma+2 \pi)=X^{\mu}(\tau, \sigma)+2 \pi N^{\mu}
$$

String theory as a field theory 2

- Choose simple metric and "H-flux"

$$
G=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), B=\left(\begin{array}{ccc}
0 & H X^{3} & 0 \\
-H X^{3} & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

String theory as a field theory 2

- Choose simple metric and "H-flux"

$$
G=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), B=\left(\begin{array}{ccc}
0 & H X^{3} & 0 \\
-H X^{3} & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

- Highly non-trivial equations of motion

$$
\partial_{\alpha} \partial^{\alpha} X^{\mu}(\tau, \sigma)=H \epsilon^{\mu}{ }_{\nu \rho} \partial_{\sigma} X^{\nu}(\tau, \sigma) \partial_{\tau} X^{\rho}(\tau, \sigma)
$$

String theory as a field theory 2

- Choose simple metric and "H-flux"

$$
G=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), B=\left(\begin{array}{ccc}
0 & H X^{3} & 0 \\
-H X^{3} & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

- Highly non-trivial equations of motion

$$
\partial_{\alpha} \partial^{\alpha} X^{\mu}(\tau, \sigma)=H \epsilon_{\nu \rho}^{\mu} \partial_{\sigma} X^{\nu}(\tau, \sigma) \partial_{\tau} X^{\rho}(\tau, \sigma)
$$

- Our ansatz: dilute flux approximation

$$
X^{\mu}(\tau, \sigma)=X_{0}^{\mu}(\tau, \sigma)+H X_{H}^{\mu}(\tau, \sigma)+\mathcal{O}\left(H^{2}\right)
$$

String theory as a field theory 3

Solution to EOM and target space BC , order by order

String theory as a field theory 3

Solution to EOM and target space BC , order by order

- $\mathcal{O}\left(H^{0}\right)$: free string

$$
X_{0}^{\mu}(\tau, \sigma)=x^{\mu}+p^{\mu} \tau+N^{\mu} \sigma+\frac{\mathrm{i}}{2} \sum_{n \neq 0} \frac{1}{n}\left(\widetilde{\alpha}_{n}^{\mu} e^{-\mathrm{in} \sigma_{+}}+\alpha_{n}^{\mu} e^{-\mathrm{i} n \sigma_{-}}\right)
$$

String theory as a field theory 3

Solution to EOM and target space BC , order by order

- $\mathcal{O}\left(H^{0}\right)$: free string

$$
X_{0}^{\mu}(\tau, \sigma)=x^{\mu}+p^{\mu} \tau+N^{\mu} \sigma+\frac{\mathrm{i}}{2} \sum_{n \neq 0} \frac{1}{n}\left(\widetilde{\alpha}_{n}^{\mu} e^{-\mathrm{i} n \sigma_{+}}+\alpha_{n}^{\mu} e^{-\mathrm{i} n \sigma_{-}}\right)
$$

- $\mathcal{O}\left(H^{1}\right)$: much more involved

$$
\begin{aligned}
X_{H}^{\mu}(\tau, \sigma)= & x_{H}^{\mu}+p_{H}^{\mu} \tau+\frac{i}{2} \sum_{n \neq 0} \frac{1}{n}\left(\widetilde{\gamma}_{n}^{\mu} e^{-\mathrm{i} n \sigma_{+}}+\gamma_{n}^{\mu} e^{-\mathrm{i} n \sigma_{-}}\right) \\
& -\epsilon^{\mu}{ }_{\nu \rho} p^{\rho} N^{\nu} \frac{\tau^{2}}{2} \\
& -\epsilon^{\mu}{ }_{\nu \rho} \frac{1}{2} \tau\left(\left.N^{\nu} X_{0}^{\rho}\right|_{\Sigma}-p^{\nu} \tilde{X}_{0}^{\rho} \mid \Sigma\right) \\
& -\left.\left.\epsilon^{\mu}{ }_{\nu \rho} \frac{1}{4} \tilde{X}_{0}^{\nu}\right|_{\Sigma} X_{0}^{\rho}\right|_{\Sigma}
\end{aligned}
$$

Canonical quantisation

How to quantise?

Canonical quantisation

How to quantise?

- Impose canonical equal- "time" commutation relations

$$
\begin{aligned}
{\left[X^{\mu}(\tau, \sigma), X^{\nu}\left(\tau, \sigma^{\prime}\right)\right] } & =0 \\
{\left[\Pi_{\mu}(\tau, \sigma), \Pi_{\nu}\left(\tau, \sigma^{\prime}\right)\right] } & =0 \\
{\left[X^{\mu}(\tau, \sigma), \Pi_{\nu}\left(\tau, \sigma^{\prime}\right)\right] } & =\mathrm{i} \delta_{\nu}^{\mu} \delta\left(\sigma-\sigma^{\prime}\right)
\end{aligned}
$$

Canonical quantisation

How to quantise?

- Impose canonical equal- "time" commutation relations

$$
\begin{aligned}
{\left[X^{\mu}(\tau, \sigma), X^{\nu}\left(\tau, \sigma^{\prime}\right)\right] } & =0 \\
{\left[\Pi_{\mu}(\tau, \sigma), \Pi_{\nu}\left(\tau, \sigma^{\prime}\right)\right] } & =0 \\
{\left[X^{\mu}(\tau, \sigma), \Pi_{\nu}\left(\tau, \sigma^{\prime}\right)\right] } & =\mathrm{i} \delta_{\nu}^{\mu} \delta\left(\sigma-\sigma^{\prime}\right)
\end{aligned}
$$

with momentum

$$
\Pi_{\mu} \equiv \frac{\delta \mathcal{L}}{\delta \partial_{\tau} X^{\mu}}=\frac{1}{\pi}\left(G_{\mu \nu}(X) \partial_{\tau} X^{\nu}+B_{\mu \nu}(X) \partial_{\sigma} X^{\nu}\right)
$$

Canonical quantisation

How to quantise?

- Impose canonical equal- "time" commutation relations

$$
\begin{aligned}
{\left[X^{\mu}(\tau, \sigma), X^{\nu}\left(\tau, \sigma^{\prime}\right)\right] } & =0 \\
{\left[\Pi_{\mu}(\tau, \sigma), \Pi_{\nu}\left(\tau, \sigma^{\prime}\right)\right] } & =0 \\
{\left[X^{\mu}(\tau, \sigma), \Pi_{\nu}\left(\tau, \sigma^{\prime}\right)\right] } & =\mathrm{i} \delta_{\nu}^{\mu} \delta\left(\sigma-\sigma^{\prime}\right)
\end{aligned}
$$

with momentum

$$
\Pi_{\mu} \equiv \frac{\delta \mathcal{L}}{\delta \partial_{\tau} X^{\mu}}=\frac{1}{\pi}\left(G_{\mu \nu}(X) \partial_{\tau} X^{\nu}+B_{\mu \nu}(X) \partial_{\sigma} X^{\nu}\right)
$$

- Direction $(1,2)$ for $[\Pi, \Pi]$ complicated

Canonical quantisation

How to quantise?

- Impose canonical equal- "time" commutation relations

$$
\begin{aligned}
{\left[X^{\mu}(\tau, \sigma), X^{\nu}\left(\tau, \sigma^{\prime}\right)\right] } & =0 \\
{\left[\Pi_{\mu}(\tau, \sigma), \Pi_{\nu}\left(\tau, \sigma^{\prime}\right)\right] } & =0 \\
{\left[X^{\mu}(\tau, \sigma), \Pi_{\nu}\left(\tau, \sigma^{\prime}\right)\right] } & =\mathrm{i} \delta_{\nu}^{\mu} \delta\left(\sigma-\sigma^{\prime}\right)
\end{aligned}
$$

with momentum

$$
\Pi_{\mu} \equiv \frac{\delta \mathcal{L}}{\delta \partial_{\tau} X^{\mu}}=\frac{1}{\pi}\left(G_{\mu \nu}(X) \partial_{\tau} X^{\nu}+B_{\mu \nu}(X) \partial_{\sigma} X^{\nu}\right)
$$

- Direction $(1,2)$ for $[\Pi, \Pi]$ complicated
- Again, proceed order by order

Canonical quantisation 2

Order $\mathcal{O}\left(H^{0}\right)$

Canonical quantisation 2

Order $\mathcal{O}\left(H^{0}\right)$

- Simple momentum $\Pi_{\mu}=\pi^{-1} \eta_{\mu \nu} \partial_{\tau} X^{\nu}$

Canonical quantisation 2

Order $\mathcal{O}\left(H^{0}\right)$

- Simple momentum $\Pi_{\mu}=\pi^{-1} \eta_{\mu \nu} \partial_{\tau} X^{\nu}$
- Impose free string quantisation

$$
\begin{aligned}
{\left[X_{0}^{\mu}(\tau, \sigma), X_{0}^{\nu}\left(\tau, \sigma^{\prime}\right)\right] } & =0 \\
{\left[\partial_{\tau} X_{0}^{\mu}(\tau, \sigma), \partial_{\tau} X_{0}^{\nu}\left(\tau, \sigma^{\prime}\right)\right] } & =0 \\
{\left[X_{0}^{\mu}(\tau, \sigma), \partial_{\tau} X_{0}^{\nu}\left(\tau, \sigma^{\prime}\right)\right] } & =\mathrm{i} \pi \eta^{\mu \nu} \delta\left(\sigma-\sigma^{\prime}\right)
\end{aligned}
$$

Canonical quantisation 2

Order $\mathcal{O}\left(H^{0}\right)$

- Simple momentum $\Pi_{\mu}=\pi^{-1} \eta_{\mu \nu} \partial_{\tau} X^{\nu}$
- Impose free string quantisation

$$
\begin{aligned}
{\left[X_{0}^{\mu}(\tau, \sigma), X_{0}^{\nu}\left(\tau, \sigma^{\prime}\right)\right] } & =0 \\
{\left[\partial_{\tau} X_{0}^{\mu}(\tau, \sigma), \partial_{\tau} X_{0}^{\nu}\left(\tau, \sigma^{\prime}\right)\right] } & =0 \\
{\left[X_{0}^{\mu}(\tau, \sigma), \partial_{\tau} X_{0}^{\nu}\left(\tau, \sigma^{\prime}\right)\right] } & =\mathrm{i} \pi \eta^{\mu \nu} \delta\left(\sigma-\sigma^{\prime}\right)
\end{aligned}
$$

- Plug in mode expansion and read off

$$
\begin{aligned}
& {\left[\widetilde{\alpha}_{m}^{\mu}, \widetilde{\alpha}_{n}^{\nu}\right]=\left[\alpha_{m}^{\mu}, \alpha_{n}^{\nu}\right]=m \delta_{m,-n} \eta^{\mu \nu}} \\
& {\left[x^{\mu}, p^{\nu}\right]=\frac{i}{2} \eta^{\mu \nu}}
\end{aligned}
$$

Canonical quantisation 3

Order $\mathcal{O}\left(H^{1}\right)$: Need to be careful!

Canonical quantisation 3

Order $\mathcal{O}\left(H^{1}\right)$: Need to be careful!

- Wrong idea for first commutator

$$
\left[X_{H}^{\mu}(\tau, \sigma), X_{H}^{\nu}\left(\tau, \sigma^{\prime}\right)\right]=0
$$

Canonical quantisation 3

Order $\mathcal{O}\left(H^{1}\right)$: Need to be careful!

- Wrong idea for first commutator

$$
\left[X_{H}^{\mu}(\tau, \sigma), X_{H}^{\nu}\left(\tau, \sigma^{\prime}\right)\right]=0
$$

Would be $\mathcal{O}\left(H^{2}\right)$ and ill-defined

Canonical quantisation 3

Order $\mathcal{O}\left(H^{1}\right)$: Need to be careful!

- Wrong idea for first commutator

$$
\left[X_{H}^{\mu}(\tau, \sigma), X_{H}^{\nu}\left(\tau, \sigma^{\prime}\right)\right]=0
$$

Would be $\mathcal{O}\left(H^{2}\right)$ and ill-defined

- Instead, two terms

$$
\begin{aligned}
0 & =\left.\left[X^{\mu}(\tau, \sigma), X^{\nu}\left(\tau, \sigma^{\prime}\right)\right]\right|_{H} \\
& =H\left[X_{0}^{\mu}(\tau, \sigma), X_{H}^{\nu}\left(\tau, \sigma^{\prime}\right)\right]+H\left[X_{H}^{\mu}(\tau, \sigma), X_{0}^{\nu}\left(\tau, \sigma^{\prime}\right)\right]
\end{aligned}
$$

and even more complicated for other commutators

Canonical quantisation 3

Order $\mathcal{O}\left(H^{1}\right)$: Need to be careful!

- Wrong idea for first commutator

$$
\left[X_{H}^{\mu}(\tau, \sigma), X_{H}^{\nu}\left(\tau, \sigma^{\prime}\right)\right]=0
$$

Would be $\mathcal{O}\left(H^{2}\right)$ and ill-defined

- Instead, two terms

$$
\begin{aligned}
0 & =\left.\left[X^{\mu}(\tau, \sigma), X^{\nu}\left(\tau, \sigma^{\prime}\right)\right]\right|_{H} \\
& =H\left[X_{0}^{\mu}(\tau, \sigma), X_{H}^{\nu}\left(\tau, \sigma^{\prime}\right)\right]+H\left[X_{H}^{\mu}(\tau, \sigma), X_{0}^{\nu}\left(\tau, \sigma^{\prime}\right)\right]
\end{aligned}
$$

and even more complicated for other commutators

- Finally, read off some - but by far not all - commutators

$$
\begin{array}{r}
{\left[\gamma^{1}, \alpha^{2}\right]-\left[\gamma^{2}, \alpha^{1}\right] \neq 0} \\
{\left[\gamma^{1}, p^{2}\right]-\left[p_{H}^{2}, \alpha^{1}\right] \neq 0} \\
{\left[\gamma^{1}, N^{2}\right]=0}
\end{array}
$$

Intermission

Results so far

Intermission

Results so far

- Imposed canonical commutation relations on the classical solution up to order $\mathcal{O}\left(H^{1}\right)$

Intermission

Results so far

- Imposed canonical commutation relations on the classical solution up to order $\mathcal{O}\left(H^{1}\right)$
- Found compatible commutators for combinations of expansion coefficients

Intermission

Results so far

- Imposed canonical commutation relations on the classical solution up to order $\mathcal{O}\left(H^{1}\right)$
- Found compatible commutators for combinations of expansion coefficients
- No exhaustive list of such commutators \rightarrow eventually, not possible to judge whether quantisation is fully consistent

Intermission

Results so far

- Imposed canonical commutation relations on the classical solution up to order $\mathcal{O}\left(H^{1}\right)$
- Found compatible commutators for combinations of expansion coefficients
- No exhaustive list of such commutators \rightarrow eventually, not possible to judge whether quantisation is fully consistent
- Difficulties come from solving order by order and cannot be overcome in that procedure, even in principle

T-duality

What is this?

T-duality

What is this?

- T-duality relates different string theories

T-duality

What is this?

- T-duality relates different string theories
- Simple case: string theory on a torus with radius $R \leftrightarrow$ string theory on a torus with radius $1 / R$

T-duality

What is this?

- T-duality relates different string theories
- Simple case: string theory on a torus with radius $R \leftrightarrow$ string theory on a torus with radius $1 / R$
- Physically equivalent: mass spectrum invariant

T-duality

What is this?

- T-duality relates different string theories
- Simple case: string theory on a torus with radius $R \leftrightarrow$ string theory on a torus with radius $1 / R$
- Physically equivalent: mass spectrum invariant
- In path integral description: gauging procedure, simply a matter of what is integrated out

T-duality

What is this?

- T-duality relates different string theories
- Simple case: string theory on a torus with radius $R \leftrightarrow$ string theory on a torus with radius $1 / R$
- Physically equivalent: mass spectrum invariant
- In path integral description: gauging procedure, simply a matter of what is integrated out
- Always necessary: isometry in the target space

T-duality

What is this?

- T-duality relates different string theories
- Simple case: string theory on a torus with radius $R \leftrightarrow$ string theory on a torus with radius $1 / R$
- Physically equivalent: mass spectrum invariant
- In path integral description: gauging procedure, simply a matter of what is integrated out
- Always necessary: isometry in the target space
- Here: metric and B-field only depend on $X^{3} \rightarrow \mathbf{2}$ isometries

T-duality 2

Changing frame: $X^{\mu} \rightarrow Z^{\mu}$

T-duality 2

Changing frame: $X^{\mu} \rightarrow Z^{\mu}$

- Transforming metric and B-field under 2 T-dualities

$$
G=f\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \frac{1}{f}
\end{array}\right), B=f\left(\begin{array}{ccc}
0 & -H Z^{3} & 0 \\
H Z^{3} & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

T-duality 2

Changing frame: $X^{\mu} \rightarrow Z^{\mu}$

- Transforming metric and B-field under 2 T-dualities

$$
G=f\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \frac{1}{f}
\end{array}\right), B=f\left(\begin{array}{ccc}
0 & -H Z^{3} & 0 \\
H Z^{3} & 0 & 0 \\
0 & 0 & 0
\end{array}\right), f=\frac{1}{1+\left(H Z^{3}\right)^{2}}
$$

T-duality 2

Changing frame: $X^{\mu} \rightarrow Z^{\mu}$

- Transforming metric and B-field under 2 T-dualities

$$
G=f\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \frac{1}{f}
\end{array}\right), B=f\left(\begin{array}{ccc}
0 & -H Z^{3} & 0 \\
H Z^{3} & 0 & 0 \\
0 & 0 & 0
\end{array}\right), f=\frac{1}{1+\left(H Z^{3}\right)^{2}}
$$

- f makes this "non-geometric": going around a circle $Z^{3} \rightarrow Z^{3}+2 \pi$ cannot be absorbed by gauge transformation or diffeomorphism

T-duality 2

Changing frame: $X^{\mu} \rightarrow Z^{\mu}$

- Transforming metric and B-field under 2 T-dualities

$$
G=f\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \frac{1}{f}
\end{array}\right), B=f\left(\begin{array}{ccc}
0 & -H Z^{3} & 0 \\
H Z^{3} & 0 & 0 \\
0 & 0 & 0
\end{array}\right), f=\frac{1}{1+\left(H Z^{3}\right)^{2}}
$$

- f makes this "non-geometric": going around a circle $Z^{3} \rightarrow Z^{3}+2 \pi$ cannot be absorbed by gauge transformation or diffeomorphism (for X-frame it could!)

T-duality 3

How to find out about the Z^{μ} ?

T-duality 3

How to find out about the Z^{μ} ?

- Use T-duality

T-duality 3

How to find out about the Z^{μ} ?

- Use T-duality

$$
\begin{array}{r}
\partial_{\tau} X^{1}=\partial_{\sigma} Z^{1}-H Z^{3} \partial_{\tau} Z^{2} \\
\partial_{\sigma} X^{1}=\partial_{\tau} Z^{1}-H Z^{3} \partial_{\sigma} Z^{2} \\
\partial_{\tau} X^{2}=\partial_{\sigma} Z^{2}+H Z^{3} \partial_{\tau} Z^{1} \\
\partial_{\sigma} X^{2}=\partial_{\tau} Z^{2}+H Z^{3} \partial_{\sigma} Z^{1} \\
\partial_{\tau} X^{3}=\partial_{\tau} Z^{3} \\
\partial_{\sigma} X^{3}=\partial_{\sigma} Z^{3}
\end{array}|\Longleftrightarrow| \begin{aligned}
& \partial_{\tau} Z^{1}=\partial_{\sigma} X^{1}+H X^{3} X^{2} \\
& \partial_{\sigma} Z^{1}=\partial_{\tau} X^{1}+H X^{3} \partial_{\sigma} X^{2} \\
& \partial_{\tau} Z^{2}=\partial_{\sigma} X^{2}-H X^{3} \partial_{\tau} X^{1} \\
& \partial_{\sigma} Z^{2}=\partial_{\tau} X^{2}-H X^{3} \partial_{\sigma} X^{1} \\
& \partial_{\tau} Z^{3}=\partial_{\tau} X^{3} \\
& \partial_{\sigma} Z^{3}=\partial_{\sigma} X^{3}
\end{aligned}
$$

T-duality 3

How to find out about the Z^{μ} ?

- Use T-duality

$$
\begin{array}{r}
\partial_{\tau} X^{1}=\partial_{\sigma} Z^{1}-H Z^{3} \partial_{\tau} Z^{2} \\
\partial_{\sigma} X^{1}=\partial_{\tau} Z^{1}-H Z^{3} \partial_{\sigma} Z^{2} \\
\partial_{\tau} X^{2}=\partial_{\sigma} Z^{2}+H Z^{3} \partial_{\tau} Z^{1} \\
\partial_{\sigma} X^{2}=\partial_{\tau} Z^{2}+H Z^{3} \partial_{\sigma} Z^{1} \\
\partial_{\tau} X^{3}=\partial_{\tau} Z^{3} \\
\partial_{\sigma} X^{3}=\partial_{\sigma} Z^{3}
\end{array}|\Longleftrightarrow| \begin{aligned}
& \partial_{\tau} Z^{1}=\partial_{\sigma} X^{1}+H X^{2} X^{2} \\
& \partial_{\sigma} Z^{1}=\partial_{\tau} X^{1}+H X^{3} \partial_{\sigma} X^{2} \\
& \partial_{\tau} Z^{2}=\partial_{\sigma} X^{2}-H X^{3} \partial_{\tau} X^{1} \\
& \partial_{\sigma} Z^{2}=\partial_{\tau} X^{2}-H X^{3} \partial_{\sigma} X^{1} \\
& \partial_{\tau} Z^{3}=\partial_{\tau} X^{3} \\
& \partial_{\sigma} Z^{3}=\partial_{\sigma} X^{3}
\end{aligned}
$$

- Integrate!

T-duality 3

How to find out about the Z^{μ} ?

- Use T-duality

$$
\begin{array}{r}
\partial_{\tau} X^{1}=\partial_{\sigma} Z^{1}-H Z^{3} \partial_{\tau} Z^{2} \\
\partial_{\sigma} X^{1}=\partial_{\tau} Z^{1}-H Z^{3} \partial_{\sigma} Z^{2} \\
\partial_{\tau} X^{2}=\partial_{\sigma} Z^{2}+H Z^{3} \partial_{\tau} Z^{1} \\
\partial_{\sigma} X^{2}=\partial_{\tau} Z^{2}+H Z^{3} \partial_{\sigma} Z^{1} \\
\partial_{\tau} X^{3}=\partial_{\tau} Z^{3} \\
\partial_{\sigma} X^{3}=\partial_{\sigma} Z^{3}
\end{array}|\Longleftrightarrow| \begin{aligned}
& \partial_{\tau} Z^{1}=\partial_{\sigma} X^{1}+H X^{3} X^{2} \\
& \partial_{\sigma} Z^{1}=\partial_{\tau} X^{1}+H X^{3} \partial_{\sigma} X^{2} \\
& \partial_{\tau} Z^{2}=\partial_{\sigma} X^{2}-H X^{3} \partial_{\tau} X^{1} \\
& \partial_{\sigma} Z^{2}=\partial_{\tau} X^{2}-H X^{3} \partial_{\sigma} X^{1} \\
& \partial_{\tau} Z^{3}=\partial_{\tau} X^{3} \\
& \partial_{\sigma} Z^{3}=\partial_{\sigma} X^{3}
\end{aligned}
$$

- Integrate! \rightarrow super-complicated expressions $Z^{\mu}(\tau, \sigma)=\ldots$

T-duality 3

How to find out about the Z^{μ} ?

- Use T-duality

$$
\begin{array}{r}
\partial_{\tau} X^{1}=\partial_{\sigma} Z^{1}-H Z^{3} \partial_{\tau} Z^{2} \\
\partial_{\sigma} X^{1}=\partial_{\tau} Z^{1}-H Z^{3} \partial_{\sigma} Z^{2} \\
\partial_{\tau} X^{2}=\partial_{\sigma} Z^{2}+H Z^{3} \partial_{\tau} Z^{1} \\
\partial_{\sigma} X^{2}=\partial_{\tau} Z^{2}+H Z^{3} \partial_{\sigma} Z^{1} \\
\partial_{\tau} X^{3}=\partial_{\tau} Z^{3} \\
\partial_{\sigma} X^{3}=\partial_{\sigma} Z^{3}
\end{array}|\Longleftrightarrow| \begin{aligned}
& \partial_{\tau} Z^{1}=\partial_{\sigma} X^{1}+H X_{\tau} X^{2} \\
& \partial_{\sigma} Z^{1}=\partial_{\tau} X^{1}+H X^{3} \partial_{\sigma} X^{2} \\
& \partial_{\tau} Z^{2}=\partial_{\sigma} X^{2}-H X^{3} \partial_{\tau} X^{1} \\
& \partial_{\sigma} Z^{2}=\partial_{\tau} X^{2}-H X^{3} \partial_{\sigma} X^{1} \\
& \partial_{\tau} Z^{3}=\partial_{\tau} X^{3} \\
& \partial_{\sigma} Z^{3}=\partial_{\sigma} X^{3}
\end{aligned}
$$

- Integrate! \rightarrow super-complicated expressions $Z^{\mu}(\tau, \sigma)=\ldots$
- Unknown integration constants (operators)

Non-commutativity

- Our hypothesis: non-geometric situation \Rightarrow Canonical commutation relations are not valid anymore

Non-commutativity

- Our hypothesis: non-geometric situation \Rightarrow Canonical commutation relations are not valid anymore
- Strategy: use obtained expressions for Z^{μ} and known commutators for expansion coefficients

Non-commutativity

- Our hypothesis: non-geometric situation \Rightarrow Canonical commutation relations are not valid anymore
- Strategy: use obtained expressions for Z^{μ} and known commutators for expansion coefficients
- Plug in!

$$
\left[Z^{1}(\tau, \sigma), Z^{2}\left(\tau, \sigma^{\prime}\right)\right]=
$$

Non-commutativity

- Our hypothesis: non-geometric situation \Rightarrow Canonical commutation relations are not valid anymore
- Strategy: use obtained expressions for Z^{μ} and known commutators for expansion coefficients
- Plug in!

$$
\left[Z^{1}(\tau, \sigma), Z^{2}\left(\tau, \sigma^{\prime}\right)\right]=\text { long and nasty computation }
$$

Non-commutativity

- Our hypothesis: non-geometric situation \Rightarrow Canonical commutation relations are not valid anymore
- Strategy: use obtained expressions for Z^{μ} and known commutators for expansion coefficients
- Plug in!

$$
\begin{aligned}
{\left[Z^{1}(\tau, \sigma), Z^{2}\left(\tau, \sigma^{\prime}\right)\right] } & =\text { long and nasty computation } \\
& =\operatorname{something}\left(\sigma, \sigma^{\prime}\right)
\end{aligned}
$$

Non-commutativity

- Our hypothesis: non-geometric situation \Rightarrow Canonical commutation relations are not valid anymore
- Strategy: use obtained expressions for Z^{μ} and known commutators for expansion coefficients
- Plug in!

$$
\begin{aligned}
{\left[Z^{1}(\tau, \sigma), Z^{2}\left(\tau, \sigma^{\prime}\right)\right] } & =\text { long and nasty computation } \\
& =\operatorname{something}\left(\sigma, \sigma^{\prime}\right) \\
& =c N^{3} H \quad \text { for } \sigma^{\prime} \rightarrow \sigma
\end{aligned}
$$

Non-commutativity

- Our hypothesis: non-geometric situation \Rightarrow Canonical commutation relations are not valid anymore
- Strategy: use obtained expressions for Z^{μ} and known commutators for expansion coefficients
- Plug in!

$$
\begin{aligned}
{\left[Z^{1}(\tau, \sigma), Z^{2}\left(\tau, \sigma^{\prime}\right)\right] } & =\text { long and nasty computation } \\
& =\operatorname{something}\left(\sigma, \sigma^{\prime}\right) \\
& =c N^{3} H \quad \text { for } \sigma^{\prime} \rightarrow \sigma
\end{aligned}
$$

- Had to choose particular commutators for the unknown integration constants

Non-commutativity 2

$$
\left[Z^{1}(\tau, \sigma), Z^{2}\left(\tau, \sigma^{\prime}\right)\right]=c N^{3} H
$$

Results

Non-commutativity 2

$$
\left[Z^{1}(\tau, \sigma), Z^{2}\left(\tau, \sigma^{\prime}\right)\right]=c N^{3} H
$$

Results

- Coordinates do not commute

Non-commutativity 2

$$
\left[Z^{1}(\tau, \sigma), Z^{2}\left(\tau, \sigma^{\prime}\right)\right]=c N^{3} H
$$

Results

- Coordinates do not commute
- Non-commutativity proportional to flux H and winding N^{3}

Non-commutativity 2

$$
\left[Z^{1}(\tau, \sigma), Z^{2}\left(\tau, \sigma^{\prime}\right)\right]=c N^{3} H
$$

Results

- Coordinates do not commute
- Non-commutativity proportional to flux H and winding N^{3}
- T-duality maps geometric into non-geometric theories

Non-commutativity 2

$$
\left[Z^{1}(\tau, \sigma), Z^{2}\left(\tau, \sigma^{\prime}\right)\right]=c N^{3} H
$$

Results

- Coordinates do not commute
- Non-commutativity proportional to flux H and winding N^{3}
- T-duality maps geometric into non-geometric theories
- Non-commuting coordinates $=$ target space not a manifold (internal directions only)

Non-commutativity 2

$$
\left[Z^{1}(\tau, \sigma), Z^{2}\left(\tau, \sigma^{\prime}\right)\right]=c N^{3} H
$$

Results

- Coordinates do not commute
- Non-commutativity proportional to flux H and winding N^{3}
- T-duality maps geometric into non-geometric theories
- Non-commuting coordinates $=$ target space not a manifold (internal directions only)
- Uncertainty relation

$$
\left(\Delta Z^{1}\right)^{2}\left(\Delta Z^{2}\right)^{2} \geqslant H^{2}\left\langle N^{3}\right\rangle^{2}
$$

Non-commutativity 2

$$
\left[Z^{1}(\tau, \sigma), Z^{2}\left(\tau, \sigma^{\prime}\right)\right]=c N^{3} H
$$

Results

- Coordinates do not commute
- Non-commutativity proportional to flux H and winding N^{3}
- T-duality maps geometric into non-geometric theories
- Non-commuting coordinates $=$ target space not a manifold (internal directions only)
- Uncertainty relation

$$
\left(\Delta Z^{1}\right)^{2}\left(\Delta Z^{2}\right)^{2} \geqslant H^{2}\left\langle N^{3}\right\rangle^{2}
$$

