QCD corrections to Higgs plus jets production with GoSam

Hans van Deurzen

Max-Planck-Institut für Physik Munich, Germany

NLO QCD corrections to the production of Higgs plus two jets at the LHC, e-Print: arXiv:1301.0493, accepted by Physics Letters B

[HvD, Greiner, Luisoni, Mastrolia, Mirabella, Ossola, Peraro, von Soden-Fraunhofen, Tramontano, 2013]

Outline

Motivation

Scattering amplitudes at one-loop

Determining the parametric form of the numerator

Extended rank numerator

 $pp \rightarrow H+2j$ with GoSam+Sherpa

 $pp \rightarrow H+3j$ with GoSam+Sherpa

Summary

Hans van Deurzen

► Boson discovered by Atlas and CMS → Higgs?

▶ Boson discovered by Atlas and CMS → Higgs?

Need to determine properties: spin, CP properties, couplings

▶ Boson discovered by Atlas and CMS → Higgs?

Need to determine properties: spin, CP properties, couplings

Vector Boson Fusion

Gluon Fusion via top loop

Boson discovered by Atlas and CMS \rightarrow Higgs? Need to determine properties: ► spin, CP properties, couplings SM Higgs production 10 5 LHC $\sigma[fb]$ Vector Boson Fusion $gg \rightarrow h$ 10^{4} 10^{-3} → Wh \rightarrow tth 10^{2} → qth qb $qq \rightarrow Zh$ TeV4LHC Higgs working group 300 400 500 100 200 m, [GeV] Gluon Fusion via top loop

Motivation for NLO

Hans van Deurzen

Motivation for NLO

[Bolzoni, Maltoni, Moch, Zaro, 2011]

 Leading order too strong dependence on renormalization and factorization scale

Motivation for NLO

[Bolzoni, Maltoni, Moch, Zaro, 2011]

- Leading order too strong dependence on renormalization and factorization scale
- Development of more general framework for NLO automation

$$\sigma^{NLO} = \int_{m+1} \left[d^{(4)} \sigma^R - d^{(4)} \sigma^A \right] + \int_m \left[d^{(4)} \sigma^B + \int_{loop} d^{(d)} \sigma^V + \int_1 d^{(d)} \sigma^A \right]$$

NLO cross section consists of:

Hans van Deurzen

$$\sigma^{NLO} = \int_{m+1} \left[d^{(4)} \sigma^R - d^{(4)} \sigma^A \right] + \int_m \left[d^{(4)} \sigma^B + \int_{loop} d^{(d)} \sigma^V + \int_1 d^{(d)} \sigma^A \right]$$

$$\uparrow$$

NLO cross section consists of:

Leading Order: Born diagram

Hans van Deurzen

$$\sigma^{NLO} = \int_{m+1} \left[d^{(4)} \sigma^R - d^{(4)} \sigma^A \right] + \int_m \left[d^{(4)} \sigma^B + \int_{loop} d^{(d)} \sigma^V + \int_1 d^{(d)} \sigma^A \right]$$

$$\uparrow$$

NLO cross section consists of:

- Leading Order: Born diagram
- Virtual corrections: loop diagrams

Hans van Deurzen

$$\begin{split} \sigma^{NLO} &= \int_{m+1} \left[d^{(4)} \sigma^R - d^{(4)} \sigma^A \right] + \int_m \left[d^{(4)} \sigma^B + \int_{loop} d^{(d)} \sigma^V + \int_1 d^{(d)} \sigma^A \right] \\ \uparrow \end{split}$$

NLO cross section consists of:

- Leading Order: Born diagram
- Virtual corrections: loop diagrams
- Real corrections: Radiation

NLO cross section consists of:

- Leading Order: Born diagram
- Virtual corrections: loop diagrams
- Real corrections: Radiation
- Subtraction terms to regulate infinities

Hans van Deurzen

$$\sigma^{NLO} = \int_{m+1} \left[d^{(4)} \sigma^R - d^{(4)} \sigma^A \right] + \int_m \left[d^{(4)} \sigma^B + \int_{loop} d^{(d)} \sigma^V + \int_1 d^{(d)} \sigma^A \right]$$

NLO cross section consists of:

- Leading Order: Born diagram
- ▶ Virtual corrections: loop diagrams ← This talk only about this part
- Real corrections: Radiation
- Subtraction terms to regulate infinities

$$\mathcal{M}_n \equiv \int \mathcal{A}_n(\bar{q}) \, d\bar{q} \equiv \int d^{-2\epsilon} \mu \int d^4q \frac{N(q,\mu^2)}{\bar{D}_0 \dots \bar{D}_{n-1}}$$

Hans van Deurzen

$$\mathcal{M}_n \equiv \int \mathcal{A}_n(\bar{q}) \, d\bar{q} \equiv \int d^{-2\epsilon} \mu \int d^4q rac{N(q,\mu^2)}{\bar{D}_0 \dots \bar{D}_{n-1}}$$

• Decompose: $c_{5,0}$ d+2 + $c_{4,0}$ + $c_{4,4}$ d+4 + $c_{3,0}$ + $c_{3,7}$ d+4 + $c_{2,0}$ - - + $c_{2,9}$ - d+4 - + $c_{1,0}$ -

$$\mathcal{M}_n \equiv \int \mathcal{A}_n(\bar{q}) \, d\bar{q} \equiv \int d^{-2\epsilon} \mu \int d^4 q \frac{N(q,\mu^2)}{\bar{D}_0 \dots \bar{D}_{n-1}}$$

• Decompose: $c_{5,0} \stackrel{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}}}} + c_{4,0} \stackrel{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}}} + c_{3,0} \stackrel{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}}} + c_{2,0} \stackrel{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet$

Hans van Deurzen

$$\mathcal{M}_n \equiv \int \mathcal{A}_n(\bar{q}) \, d\bar{q} \equiv \int d^{-2\epsilon} \mu \int d^4 q \frac{N(q,\mu^2)}{\bar{D}_0 \dots \bar{D}_{n-1}}$$

• Decompose:

$$\int d^{-2\epsilon} \mu^2 d^4 q \mathcal{A}_n(q) = \int d\bar{q} \frac{c_{5,0}\mu^2}{D_0 D_1 D_2 D_3 D_4} + \int d\bar{q} \frac{c_{4,0} + c_{4,4}\mu^4}{D_0 D_1 D_2 D_3} + \int d\bar{q} \frac{c_{3,0} + c_{4,4}\mu^4}{D_0 D_1 D_2 D_3} + \int d\bar{q} \frac{c_{3,0} + c_{3,7}\mu^2}{D_0 D_1 D_2} + \int d\bar{q} \frac{c_{2,0} + c_{2,9}\mu^2}{D_0 D_1} + \int d\bar{q} \frac{c_{1,0}}{D_0}$$

• computation of $\mathcal{M}_n \rightarrow$ computation of coefficients

Hans van Deurzen

$$c_{5,0} \xrightarrow{\mathbf{d}+2} + c_{4,0} \xrightarrow{\mathbf{d}+4} + c_{4,4} \xrightarrow{\mathbf{d}+4} + c_{3,0} \xrightarrow{\mathbf{d}+4} + c_{3,7} \xrightarrow{\mathbf{d}+4} + c_{2,0} \xrightarrow{\mathbf{d}+4} + c_{2,0} \xrightarrow{\mathbf{d}+4} + c_{1,0} \xrightarrow{\mathbf{d}+4} + c_{1$$

$$c_{5,0} \xrightarrow{\mathbf{d}+2} + c_{4,0} \xrightarrow{\mathbf{d}+4} + c_{4,4} \xrightarrow{\mathbf{d}+4} + c_{3,0} \xrightarrow{\mathbf{d}+4} + c_{3,7} \xrightarrow{\mathbf{d}+4} + c_{2,0} \xrightarrow{\mathbf{d}+4} + c_{2,0} \xrightarrow{\mathbf{d}+4} + c_{1,0} \xrightarrow{\mathbf{d}+4} + \int d\bar{q} \frac{c_{5,0}\mu^2}{D_0 D_1 D_2 D_3 D_4} + \int d\bar{q} \frac{c_{4,0} + c_{4,4}\mu^4}{D_0 D_1 D_2 D_3} + \int d\bar{q} \frac{c_{5,0} + c_{2,9}\mu^2}{D_0 D_1} + \int d\bar{q} \frac{c_{1,0}}{D_0}$$

• integral \rightarrow integrand:

$$\int d^{-2\epsilon} \mu^{2} d^{4} q \mathcal{A}_{n}(q) = \int d\bar{q} \frac{c_{5,0}\mu^{2}}{D_{0}D_{1}D_{2}D_{3}D_{4}} + \int d\bar{q} \frac{c_{4,0} + c_{4,4}\mu^{4}}{D_{0}D_{1}D_{2}D_{3}} + \int d\bar{q} \frac{c_{4,0} + c_{4,4}\mu^{4}}{D_{0}D_{1}D_{2}D_{3}} + \int d\bar{q} \frac{c_{3,0} + c_{3,7}\mu^{2}}{D_{0}D_{1}D_{2}} + \int d\bar{q} \frac{c_{2,0} + c_{2,9}\mu^{2}}{D_{0}D_{1}} + \int d\bar{q} \frac{c_{1,0}}{D_{0}}$$

► integral → integrand:

$$A_n(q) = \frac{c_{5,0}\mu^2 + f_{01234}(q,\mu^2)}{D_0 D_1 D_2 D_3 D_4} + \frac{c_{4,0} + c_{4,4}\mu^4 + f_{0123}(q,\mu^2)}{D_0 D_1 D_2 D_3} + \frac{c_{3,0} + c_{3,7}\mu^2 + f_{012}(q,\mu^2)}{D_0 D_1 D_2} + \frac{c_{2,0} + c_{2,9}\mu^2 + f_{01}(q,\mu^2)}{D_0 D_1} + \frac{c_{1,0} + f_0(q,\mu^2)}{D_0}$$

Hans van Deurzen

$$\int d^{-2\epsilon} \mu^{2} d^{4} q \mathcal{A}_{n}(q) = \int d\bar{q} \frac{c_{5,0}\mu^{2}}{D_{0}D_{1}D_{2}D_{3}D_{4}} + \int d\bar{q} \frac{c_{4,0} + c_{4,4}\mu^{4}}{D_{0}D_{1}D_{2}D_{3}} + \int d\bar{q} \frac{c_{5,0} + c_{4,4}\mu^{4}}{D_{0}D_{1}D_{2}D_{3}} + \int d\bar{q} \frac{c_{3,0} + c_{3,7}\mu^{2}}{D_{0}D_{1}D_{2}} + \int d\bar{q} \frac{c_{2,0} + c_{2,9}\mu^{2}}{D_{0}D_{1}} + \int d\bar{q} \frac{c_{1,0}}{D_{0}}$$

► integral → integrand:

$$A_n(q) = \frac{c_{5,0}\mu^2 + f_{01234}(q,\mu^2)}{D_0 D_1 D_2 D_3 D_4} + \frac{c_{4,0} + c_{4,4}\mu^4 + f_{0123}(q,\mu^2)}{D_0 D_1 D_2 D_3} + \frac{c_{3,0} + c_{3,7}\mu^2 + f_{012}(q,\mu^2)}{D_0 D_1 D_2} + \frac{c_{2,0} + c_{2,9}\mu^2 + f_{01}(q,\mu^2)}{D_0 D_1} + \frac{c_{1,0} + f_0(q,\mu^2)}{D_0}$$

$$\int d^{-2\epsilon}\mu^2\int d^4q~~rac{f_{ij\ldots}(q,\mu^2)}{D_iD_j\ldots}=0$$

Hans van Deurzen

Determining the parametric form of the numerator

Hans van Deurzen

Determining the parametric form of the numerator

$$\mathcal{A}_n = \sum_{ijklm} \frac{\Delta_{ijklm}(q,\mu^2)}{D_i D_j D_k D_l D_m} + \sum_{ijkl} \frac{\Delta_{ijkl}(q,\mu^2)}{D_i D_j D_k D_l} + \sum_{ijk} \frac{\Delta_{ijk}(q,\mu^2)}{D_i D_j D_k} + \sum_{ij} \frac{\Delta_{ij}(q,\mu^2)}{D_i D_j} + \sum_i \frac{\Delta_i(q,\mu^2)}{D_i} + \sum_i \frac{\Delta_i$$

- Form residues process independent
- Values of coefficients process dependent

Determining the parametric form of the numerator

$$\mathcal{A}_n = \sum_{ijklm} \frac{\Delta_{ijklm}(q,\mu^2)}{D_i D_j D_k D_l D_m} + \sum_{ijkl} \frac{\Delta_{ijkl}(q,\mu^2)}{D_i D_j D_k D_l} + \sum_{ijk} \frac{\Delta_{ijk}(q,\mu^2)}{D_i D_j D_k} + \sum_{ij} \frac{\Delta_{ij}(q,\mu^2)}{D_i D_j} + \sum_i \frac{\Delta_i(q,\mu^2)}{D_i} + \sum_i \frac{\Delta_i$$

- Form residues process independent
- Values of coefficients process dependent
- Implemented in Samurai [Ossola, Reiter, Tramontano, Mastrolia, 2010]

 Only q propagators and 3-gluon-vertices contribute one power of q to numerator

 Only q propagators and 3-gluon-vertices contribute one power of q to numerator

 Only q propagators and 3-gluon-vertices contribute one power of q to numerator

▶ $r_N \leq \#D$

Hans van Deurzen

Integrand decomposition algorithm

$$\Delta_{ijk\ell m}(\bar{q}) = \operatorname{Res}_{ijk\ell m} \left\{ \frac{N(\bar{q})}{\bar{D}_0 \cdots \bar{D}_{n-1}} \right\}$$
 1 coefficient

Hans van Deurzen

Integrand decomposition algorithm

$$\Delta_{ijk\ell m}(\bar{q}) = \text{Res}_{ijk\ell m} \left\{ \frac{N(\bar{q})}{\bar{D}_0 \cdots \bar{D}_{n-1}} \right\}$$

1 coefficient

Hans van Deurzen

Integrand decomposition algorithm

$$\Delta_{ijk\ell m}(\vec{q}) = \operatorname{Res}_{ijk\ell m} \left\{ \frac{N(\vec{q})}{D_0 \cdots D_{n-1}} \right\}$$

$$1 \text{ coefficient}$$

$$\Delta_{ijk\ell}(\vec{q}) = \operatorname{Res}_{ijk\ell} \left\{ \frac{N(\vec{q})}{D_0 \cdots D_{n-1}} - \sum_{i < m}^{n-1} \frac{\Delta_{ijk\ell m}(\vec{q})}{D_i D_i D_j D_k D_\ell D_m} \right\}$$

$$5 \text{ coefficients}$$

$$\Delta_{ijk}(\bar{q}) = \operatorname{Res}_{ijk} \left\{ \frac{N(\bar{q})}{\bar{D}_0 \cdots \bar{D}_{n-1}} - \sum_{i < < m}^{n-1} \frac{\Delta_{ijk\ell m}(\bar{q})}{\bar{D}_i \bar{D}_j \bar{D}_k \bar{D}_\ell \bar{D}_m} - \sum_{i < < \ell}^{n-1} \frac{\Delta_{ijk\ell}(\bar{q})}{\bar{D}_i \bar{D}_j \bar{D}_k \bar{D}_\ell} \right\} \quad 10 \text{ coefficients}$$

Hans van Deurzen
Integrand decomposition algorithm

$$\Delta_{ijk\ell m}(\bar{q}) = \operatorname{Res}_{ijk\ell m} \left\{ \frac{N(\bar{q})}{D_0 \cdots D_{n-1}} \right\}$$
1 coefficient
$$\Delta_{ijk\ell}(\bar{q}) = \operatorname{Res}_{ijk\ell} \left\{ \frac{N(\bar{q})}{D_0 \cdots D_{n-1}} - \sum_{i<
5 coefficients
$$\Delta_{ijk}(\bar{q}) = \operatorname{Res}_{ijk} \left\{ \frac{N(\bar{q})}{D_0 \cdots D_{n-1}} - \sum_{i<
10 coefficients$$$$

$$-- \underbrace{ \left(\sum_{i < k} \left(\overline{q} \right) = \operatorname{Res}_{ij} \left\{ \frac{N(\overline{q})}{\overline{D}_0 \cdots \overline{D}_{n-1}} - \sum_{i < < k}^{n-1} \frac{\Delta_{ijk\ell}(\overline{q})}{\overline{D}_i \overline{D}_j \overline{D}_k \overline{D}_\ell \overline{D}_m} - \sum_{i < < k}^{n-1} \frac{\Delta_{ijk\ell}(\overline{q})}{\overline{D}_i \overline{D}_j \overline{D}_k \overline{D}_\ell \overline{D}_\ell} - \sum_{i < < k}^{n-1} \frac{\Delta_{ijk\ell}(\overline{q})}{\overline{D}_i \overline{D}_j \overline{D}_k} \right\}$$
 10 coefficients

Hans van Deurzen

Integrand decomposition algorithm

$$\Delta_{ijk\ell m}(\vec{q}) = \operatorname{Res}_{ijk\ell m}\left\{\frac{N(\vec{q})}{D_0 \cdots D_{n-1}}\right\}$$
1 coefficients
$$\Delta_{ijk\ell}(\vec{q}) = \operatorname{Res}_{ijk\ell}\left\{\frac{N(\vec{q})}{D_0 \cdots D_{n-1}} - \sum_{i<< n}^{n-1} \frac{\Delta_{ijk\ell m}(\vec{q})}{D_i D_i D_i D_k D_k D_m}\right\}$$
5 coefficients
$$\Delta_{ijk}(\vec{q}) = \operatorname{Res}_{ijk}\left\{\frac{N(\vec{q})}{D_0 \cdots D_{n-1}} - \sum_{i<< n}^{n-1} \frac{\Delta_{ijk\ell m}(\vec{q})}{D_i D_j D_k D_k D_m} - \sum_{i<< n}^{n-1} \frac{\Delta_{ijk\ell}(\vec{q})}{D_i D_j D_k D_k D_m}\right\}$$
10 coefficients
$$\Delta_{ijk}(\vec{q}) = \operatorname{Res}_{ijk}\left\{\frac{N(\vec{q})}{D_0 \cdots D_{n-1}} - \sum_{i<< n}^{n-1} \frac{\Delta_{ijk\ell m}(\vec{q})}{D_i D_j D_k D_k D_m} - \sum_{i<< n}^{n-1} \frac{\Delta_{ijk\ell}(\vec{q})}{D_i D_j D_k D_k D_m}\right\}$$
10 coefficients
10 coefficients

Hans van Deurzen

Integrand decomposition algorithm

$$\Delta_{ijk\ell m}(\bar{q}) = \operatorname{Res}_{ijk\ell m}\left\{\frac{N(\bar{q})}{D_{0}\cdots D_{n-1}}\right\}$$
1 coefficient
$$\Delta_{ijk\ell m}(\bar{q}) = \operatorname{Res}_{ijk\ell}\left\{\frac{N(\bar{q})}{D_{0}\cdots D_{n-1}} - \sum_{i<
5 coefficients
$$\Delta_{ijk}(\bar{q}) = \operatorname{Res}_{ijk\ell}\left\{\frac{N(\bar{q})}{D_{0}\cdots D_{n-1}} - \sum_{i<
10 coefficients
$$\Delta_{ij}(\bar{q}) = \operatorname{Res}_{ij}\left\{\frac{N(\bar{q})}{D_{0}\cdots D_{n-1}} - \sum_{i<
10 coefficients
$$\Delta_{ij}(\bar{q}) = \operatorname{Res}_{ij}\left\{\frac{N(\bar{q})}{D_{0}\cdots D_{n-1}} - \sum_{i<
5 coefficients
$$-\sum_{i$$$$$$$$$$

Hexagon:
$$\binom{6}{5} \cdot 1 + \binom{6}{4} \cdot 5 + \binom{6}{3} \cdot 10 + \binom{6}{2} \cdot 10 + \binom{6}{1} \cdot 5 = 386$$
 coefficients

Hans van Deurzen

Rankcounting, higher rank

Rankcounting, higher rank

• One effective vertex: $r_N \leq \#D + 1$

Hans van Deurzen

Extended rank Integrand decomposition algorithm

$$\Delta_{ijk\ell m}(\bar{q}) = \operatorname{Res}_{ijk\ell m} \left\{ \frac{N(\bar{q})}{D_0 \cdots D_{n-1}} \right\} \qquad 1 \rightarrow 1 \text{ coefficients}$$

$$\Delta_{ijk\ell}(\bar{q}) = \operatorname{Res}_{ijk\ell} \left\{ \frac{N(\bar{q})}{D_0 \cdots D_{n-1}} - \sum_{i

$$\Delta_{ijk\ell}(\bar{q}) = \operatorname{Res}_{ijk\ell} \left\{ \frac{N(\bar{q})}{D_0 \cdots D_{n-1}} - \sum_{i

$$\Delta_{ij}(\bar{q}) = \operatorname{Res}_{ij} \left\{ \frac{N(\bar{q})}{D_0 \cdots D_{n-1}} - \sum_{i

$$- \sum_{i<\ell} \frac{\Delta_{ij}(\bar{q})}{D_i D_i D_m} - \sum_{i<\ell}^{n-1} \frac{\Delta_{ijk\ell m}(\bar{q})}{D_i D_j D_k D_\ell D_m} - \sum_{i<\ell}^{n-1} \frac{\Delta_{ijk\ell m}(\bar{q})}{D_i D_j D_k D_\ell D_m} + 5 \rightarrow 15 \text{ coefficients}$$

$$- \sum_{i<\ell}^{n-1} \frac{\Delta_{ijk}(\bar{q})}{D_i D_j D_k} - \sum_{i<\ell}^{n-1} \frac{\Delta_{ijk\ell m}(\bar{q})}{D_i D_j D_k D_\ell} - \sum_{i<\ell}^{n-1} \frac{\Delta_{ijk\ell m}(\bar{q})}{D_i D_j D_k D_\ell D_m} + 5 \rightarrow 15 \text{ coefficients}$$

$$- \sum_{i<\ell}^{n-1} \frac{\Delta_{ijk}(\bar{q})}{D_i D_j D_k} - \sum_{i<\ell}^{n-1} \frac{\Delta_{ijk\ell m}(\bar{q})}{D_i D_j D_k D_\ell} + \sum_{i<\ell}^{n-1} \frac{\Delta_{ijk\ell m}(\bar{q})}{D_i D_k D_\ell} + \sum_{i<\ell}^{n-1} \frac{\Delta_{ijk\ell m}(\bar{q})}{D_k D_\ell} + \sum_{i<\ell$$$$$$$$

► Samurai → XSamurai

Hans van Deurzen

QCD corrections to Higgs plus jets production with GoSam

12/19

 $\blacktriangleright \ \Delta(q,\mu^2)$ multivariate polynomial in q and μ^2

- $\blacktriangleright \ \Delta(q,\mu^2)$ multivariate polynomial in q and μ^2
- Systematic sampling: DFT

- $\Delta(q,\mu^2)$ multivariate polynomial in q and μ^2
- Systematic sampling: DFT

$$P(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n$$

- $\blacktriangleright \ \Delta(q,\mu^2)$ multivariate polynomial in q and μ^2
- Systematic sampling: DFT

$$P(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n$$

$$x_k = \rho \exp\left[-2\pi i \frac{k}{n+1}\right]$$

- $\Delta(q,\mu^2)$ multivariate polynomial in q and μ^2
- Systematic sampling: DFT

$$P(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n$$
$$x_k = \rho \exp\left[-2\pi i \frac{k}{n+1}\right]$$
$$P_k = P(x_k) = \sum_{l=0}^n c_l \rho^l \exp\left[-2\pi i \frac{k}{(n+1)}l\right]$$

- $\Delta(q,\mu^2)$ multivariate polynomial in q and μ^2
- Systematic sampling: DFT

$$P(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n$$

$$x_k = \rho \exp\left[-2\pi i \frac{k}{n+1}\right]$$

$$P_k = P(x_k) = \sum_{l=0}^n c_l \rho^l \exp\left[-2\pi i \frac{k}{(n+1)}l\right]$$

$$\sum_{n=0}^{N-1} \exp\left[2\pi i \frac{k}{N}n\right] \exp\left[-2\pi i \frac{k'}{N}n\right] = N\delta_{kk'}$$

Hans van Deurzen

- $\Delta(q,\mu^2)$ multivariate polynomial in q and μ^2
- Systematic sampling: DFT

$$P(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n$$

$$x_k = \rho \exp\left[-2\pi i \frac{k}{n+1}\right]$$

$$P_k = P(x_k) = \sum_{l=0}^n c_l \rho^l \exp\left[-2\pi i \frac{k}{(n+1)}l\right]$$

$$\sum_{n=0}^{N-1} \exp\left[2\pi i \frac{k}{N}n\right] \exp\left[-2\pi i \frac{k'}{N}n\right] = N\delta_{kk'}$$

$$c_l = \frac{\rho^{-l}}{n+1} \sum_{k=0}^n P_k \exp\left[2\pi i \frac{k}{n+1}l\right]$$

Hans van Deurzen

•
$$q = \sum_{i=1}^{4} x_i e_i \Rightarrow \mu^2, x_1, x_2, x_3, x_4$$
 variables

•
$$q = \sum_{i=1}^{4} x_i e_i \Rightarrow \mu^2, x_1, x_2, x_3, x_4$$
 variables

At quintuple cut: Everything constrained

•
$$q = \sum_{i=1}^{4} x_i e_i \Rightarrow \mu^2, x_1, x_2, x_3, x_4$$
 variables

- At quintuple cut: Everything constrained
- At quadruple cut: $\Delta(\mu^2)$

•
$$q = \sum_{i=1}^{4} x_i e_i \Rightarrow \mu^2, x_1, x_2, x_3, x_4$$
 variables

At quintuple cut: Everything constrained

• At quadruple cut: $\Delta(\mu^2)$

• At triple cut: $\Delta(\mu^2, x_3, x_4)$ Condition: $x_3x_4 = C(x_1, x_2) = C \Rightarrow \Delta(\mu^2, x_3, C/x_3)$

•
$$q = \sum_{i=1}^{4} x_i e_i \Rightarrow \mu^2, x_1, x_2, x_3, x_4$$
 variables

At quintuple cut: Everything constrained

- At quadruple cut: $\Delta(\mu^2)$
- At triple cut: $\Delta(\mu^2, x_3, x_4)$ Condition: $x_3x_4 = C(x_1, x_2) = C \Rightarrow \Delta(\mu^2, x_3, C/x_3)$
 - Use DFT: solutions $\propto \frac{1}{C}$, problem if C = 0

•
$$q = \sum_{i=1}^{4} x_i e_i \Rightarrow \mu^2, x_1, x_2, x_3, x_4$$
 variables

At quintuple cut: Everything constrained

- At quadruple cut: $\Delta(\mu^2)$
- At triple cut: $\Delta(\mu^2, x_3, x_4)$ Condition: $x_3x_4 = C(x_1, x_2) = C \Rightarrow \Delta(\mu^2, x_3, C/x_3)$
 - Use DFT: solutions $\propto \frac{1}{C}$, problem if C = 0
 - ▶ Use DFT twice, $\Delta(\mu^2, x3, C/x3)$ and $\Delta(\mu^2 C/x_4, x_4)$ solutions $\propto \frac{1}{1-C}$, problem if C = 1

•
$$q = \sum_{i=1}^{4} x_i e_i \Rightarrow \mu^2, x_1, x_2, x_3, x_4$$
 variables

At quintuple cut: Everything constrained

• At quadruple cut: $\Delta(\mu^2)$

• At triple cut: $\Delta(\mu^2, x_3, x_4)$ Condition: $x_3x_4 = C(x_1, x_2) = C \Rightarrow \Delta(\mu^2, x_3, C/x_3)$

- Use DFT: solutions $\propto \frac{1}{C}$, problem if C = 0
- ▶ Use DFT twice, $\Delta(\mu^2, x3, C/x3)$ and $\Delta(\mu^2 C/x_4, x_4)$ solutions $\propto \frac{1}{1-C}$, problem if C = 1
- ▶ Branching: if(C=0): Use $\Delta(\mu^2, x_3, C/x_3)$ and $\Delta(\mu^2 C/x_4, x_4)$ else: Use $\Delta(\mu^2, x_3, C/x_3)$

Hans van Deurzen

At double cut: $\Delta(\mu^2, x_1, x_3, x_4)$ with $x_3x_4 = F(x_1) = Ax_1^2 + Bx_1 + C$ lot of branchings:

- At double cut: $\Delta(\mu^2, x_1, x_3, x_4)$ with $x_3x_4 = F(x_1) = Ax_1^2 + Bx_1 + C$ lot of branchings:
 - F=0 has no solutions
 - F=0 has one zero solution
 - F=0 has one non-zero solution
 - F=0 has two zero solutions
 - F=0 has two non-zero solutions

- At double cut: $\Delta(\mu^2, x_1, x_3, x_4)$ with $x_3x_4 = F(x_1) = Ax_1^2 + Bx_1 + C$ lot of branchings:
 - F=0 has no solutions
 - F=0 has one zero solution
 - F=0 has one non-zero solution
 - F=0 has two zero solutions
 - F=0 has two non-zero solutions
- At single cut: Δ(μ², x₁, x₂, x₃, x₄) with x₃x₄ x₁x₂ = G similar to the triple cut

$pp \rightarrow H+2j$ with GoSam+Sherpa

Number of diagrams:

$ud \rightarrow Hud$	1 tree	32 NLO
$uu \rightarrow Huu$	2 tree	64 NLO
$ug \rightarrow Hug$	8 tree	179 NLO
$gg \rightarrow Hgg$	26 tree	651 NLO
Total	37 tree	926 NLO

$pp \rightarrow H+2j$ with GoSam+Sherpa

Results $pp \rightarrow H+2j$ with GoSam+Sherpa

- Interface GoSam + Sherpa
- Pole cancellation
- Agreement with MCFM(v6.4) and R. K. Ellis, W. Giele, and G. Zanderighi

Results $pp \rightarrow H+3j$ with GoSam+Sherpa

$$\frac{2\mathfrak{Re}\left\{\mathcal{M}^{\text{tree-level}*}\mathcal{M}^{\text{one-loop}}\right\}}{\left(4\pi\alpha_s\right)\left|\mathcal{M}^{\text{tree-level}}\right|^2} \equiv \frac{a_{-2}}{\epsilon^2} + \frac{a_{-1}}{\epsilon} + a_0$$

	$gg \rightarrow Hq\bar{q}g$		
b_0	$0.6309159660038877\cdot 10^{-4}$		
a_0	48.68424097859422		
a_{-1}	-36.08277727147958	-36.08277728199094	
a_{-2}	-11.66666666667209	-11.666666666666667	
$q \bar{q} ightarrow H q ar{q} g$			
b_0	$0.3609139855530763\cdot 10^{-4}$		
a_0	69.32351140490162		
a_{-1}	-29.98862932963380	-29.98862932963629	
a_{-2}	-8.3333333333333333333333	-8.3333333333333333334	
	$q \bar{q} ightarrow H q' \bar{q}' g$		
b_0	$0.2687990772405433\cdot 10^{-5}$		
a_0	15.79262767177915		
a_{-1}	-32.35320587070861	-32.35320587073038	
a_{-2}	-8.333333333333333398	-8.3333333333333333332	

Hans van Deurzen

Summary

► Samurai extended to higher rank numerators ⇒ can do effective vertices

Summary

- ► Samural extended to higher rank numerators ⇒ can do effective vertices
- ▶ pp→H+2j in gluon fusion has been calculated and integrated

Summary

- ► Samural extended to higher rank numerators ⇒ can do effective vertices
- ▶ pp→H+2j in gluon fusion has been calculated and integrated
- ▶ pp→H+3j in production

Backup slides

Hans van Deurzen

table H+2j

$$\frac{2\mathfrak{Re}\left\{\mathcal{M}^{\text{tree-level}*}\mathcal{M}^{\text{one-loop}}\right\}}{(4\pi\alpha_s)\left|\mathcal{M}^{\text{tree-level}}\right|^2} \equiv \frac{a_{-2}}{\epsilon^2} + \frac{a_{-1}}{\epsilon} + a_0$$

	$gg \to Hgg$	
c_0	$0.1507218951429643\cdot 10^{-3}$	
a_0	59.8657965614009	
a_{-1}	-26.4694115468536	-26.46941154671207
a_{-2}	-12.00000000000001	-12.000000000000000000000000000000000000
	$gg \to Hq\bar{q}$	
c_0	$0.5677813961826772 \cdot 10^{-6}$	
a_0	66.6635142370683	
a_{-1}	-16.5816633315627	-16.58166333155405
a_{-2}	-8.666666666666669	-8.6666666666666668
	$q\bar{q} \rightarrow Hq\bar{q}$	
c_0	$0.1099527895267439 \cdot 10^{-5}$	
a_0	88.2959834057198	
a_{-1}	-10.9673755313443	-10.96737553134440
a_{-2}	-5.3333333333333333332	-5.333333333333333334
	$q\bar{q} \rightarrow Hq'\bar{q}'$	
c_0	$0.1011096724203529 \cdot 10^{-6}$	
a_0	33.9521626734153	
a_{-1}	-13.8649292834138	-13.86492928341388

Extended rank residues

$$\begin{split} \Delta_{ijk\ell m}(q,\mu^2) &= \binom{i_jk\ell m}{c_{5,0}} \mu^2 \;, \\ \Delta_{ijk\ell}(q,\mu^2) &= \Delta^R_{ijk\ell}(q,\mu^2) + c_{4,0}^{(ijk\ell)} + c_{4,2}^{(ijk\ell)} \mu^2 + c_{4,4}^{(ijk\ell)} \mu^4 \;, \\ \Delta_{ijk}(q,\mu^2) &= \Delta^R_{ijk}(q,\mu^2) + c_{3,0}^{(ijk)} + c_{3,7}^{(ijk)} \mu^2 \;, \\ \Delta_{ij}(q,\mu^2) &= \Delta^R_{ij}(q,\mu^2) + c_{2,9}^{(ij)} + c_{2,9}^{(ij)} \mu^2 \;, \\ \Delta_{i}(q,\mu^2) &= \binom{i_1}{c_{1,0}} + c_{1,1}^{(i)}((q+p_i) \cdot e_1) + c_{1,2}^{(i)}((q+p_i) \cdot e_2) \;, \\ &+ \binom{i_1}{c_{1,3}}((q+p_i) \cdot e_3) + c_{1,4}^{(i)}((q+p_i) \cdot e_4) \;. \end{split}$$

$$\begin{split} \Delta^{0}_{1jk\ell}(q,\mu^2) &= \left(c^{(ijkl)}_{1,1} + c^{(ijkl)}_{1,3} + c^{(ijkl)}_{1,1} + c^{(ijkl)}_{1,3} + c^{(ijkl)}_{1,1} + c^{(ijkl)}_{1,3} + c^{$$

Hans van Deurzen

Extended rank residues

$$\begin{split} \Delta_{ijk\ell m}(q,\mu^2) &= \binom{i_{ijk\ell m}}{s_{3,0}}\mu^2 \ , \\ \Delta_{ijk\ell}(q,\mu^2) &= \Delta^R_{ijk\ell}(q,\mu^2) + c_{4,0}^{(ijk\ell)} + c_{4,2}^{(ijk\ell)}\mu^2 + c_{4,4}^{(ijk\ell)}\mu^4 \ , \\ \Delta_{ijk}(q,\mu^2) &= \Delta^R_{ijk}(q,\mu^2) + c_{3,0}^{(ijk)} + c_{3,7}^{(ijk)}\mu^2 \ , \\ \Delta_{ij}(q,\mu^2) &= \Delta^R_{ij}(q,\mu^2) + c_{2,0}^{(ij)} + c_{2,9}^{(ij)}\mu^2 \ , \\ \Delta_{i}(q,\mu^2) &= c_{1,0}^{(i)} + c_{1,1}^{(i)}((q+p_i) \cdot e_1) + c_{1,2}^{(i)}((q+p_i) \cdot e_2) \\ &\quad + c_{1,3}^{(i)}((q+p_i) \cdot e_3) + c_{1,4}^{(i)}((q+p_i) \cdot e_4) \ . \end{split}$$

$$\begin{split} \Delta^{0}_{ijkl}(q,\mu^{2}) &= \left(c^{(ijkl)}_{1,1} + c^{(ijkl)}_{1,3} + c^{(ijkl)}_{1,4} + c^{(ijkl)}_{1,3} + c^{(ijkl)}_{1,4} + c^{(ijkl)}_{1,3} + c^{(ijkl)}_{1,4} + c^{(ijkl)}_{1,3} + c^{(ijkl)}_{1,4} + c$$

$$\begin{split} \Lambda_{ijk\ell m}(q,\mu^2) &= \Delta_{ijk\ell m}(q,\mu^2) + c_{1,1}^{(ijk)} \mu^4 \ (q+p_i) \cdot v_{\perp} \ , \\ \Lambda_{ijk\ell}(q,\mu^2) &= \Delta_{ijk\ell}(q,\mu^2) + c_{1,1}^{(ijk)} \mu^4 \ (q+p_i) \cdot v_{\perp} \ , \\ \Lambda_{ijk}(q,\mu^2) &= \Delta_{ijk}(q,\mu^2) + c_{1,1}^{(ijk)} \mu^4 \ (q+p_i) \cdot v_{\perp} \ , \\ \Lambda_{ijk}(q,\mu^2) &= \Delta_{ijk}(q,\mu^2) + c_{1,1}^{(ijk)} \mu^4 \ (q+p_i) \cdot v_{\perp} \ , \\ \Lambda_{ijk}(q,\mu^2) &= \Delta_{ijk}(q,\mu^2) + \mu^2 \ (q+p_i) \cdot v_{\perp} \)^2 + c_{1,1}^{(ijk)}((q+p_i) \cdot v_{\perp} \)^4 \ , \\ \Lambda_{ij}(q,\mu^2) &= \Delta_{ij}(q,\mu^2) + \mu^2 \ (c_{2,11}^{(ij)} \ (q+p_i) \cdot v_{\perp} \)^2 + c_{2,11}^{(ij)}((q+p_i) \cdot v_{\perp} \)^3 \ &+ c_{2,12}^{(ij)}(q+p_i) \cdot v_{\perp} \)^2 + c_{2,11}^{(ij)}((q+p_i) \cdot v_{\perp} \)^2 + c_{2,$$
Results $pp \rightarrow H+2j$ with GoSam+Sherpa

LHC 8 TeV PDF: cteq6mE anti-kt: R = 0.5 $p_T > 20 \text{ GeV}$ $|\eta| < 4.0$ $M_H = 125 \text{ GeV}$ $\mu_R = \mu_F = M_H$

Hans van Deurzen

QCD corrections to Higgs plus jets production with GoSam