

PPSMC, 17.05.13

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Introduction

Since the discovery of a new resonance on July 2012:

- 1. Updates with full 2012 dataset
- 2. Property measurements:
 - mass
 - couplings •
 - spin and CP-parity •

This talk covers the latest results in:

- 1. $H \rightarrow \gamma \gamma$
- 2. H→ZZ
- 3. H→WW
- 4. Combination

Observed

10⁻³

 10^{-6} 10⁻⁹

10⁻¹²

10⁻¹⁵ 10⁻¹⁸

10⁻²¹

10-24

SM expected

PLB 716(2012) 1

115

120

- 1. 2 isolated high- p_T photons (E_T >40,30 GeV)
- 2. Background extrapolated from side-bands in data (yy 75%, yj 22%, jj 3%)
- 3. Mass resolution ~1.7GeV at 126 GeV
- 4. Events categorized in several VBF/VH/ggF-dominated regions

H $\rightarrow \gamma \gamma$: Mass & signal strength ATLAS-CONF-2013-012

- 1. Spin-1 hypothesis disfavoured by Landau-Yang theorem
- Comparison of the SM 0⁺ hypothesis with the 2⁺_m "graviton-like" with minimal couplings (produced via gg and qqbar)
- 3. Discriminating variable: polar angle θ^* in the resonance rest frame
- 4. 2 independent fit of signal (0⁺ or 2⁺_m) + background → slightly different background subtraction
 - Data in better agreement with the SM 0⁺ hypothesis
 - 2⁺_m resonance produced via gluon fusion excluded at 99% CL

lcosθ*l

ATLAS-CONF-2013-013

- 2 OS SF isolated lepton pairs (p_T>20,15, 10, 7(6) GeV)
- 2. Clean signature, very high S/B, but low statistics
- 3. Mass resolution ~1.6-2.4 GeV
- 4. Categorization in VBF/VH/ggF-like events

Events/10 GeV

SM expectation

m _{4l} range [GeV]	[120-130]	>160
Observed Events	32	376
Exp. SM signal	15.9±2.1	
Exp. Bkg	11.1±1.3	348±26

Daniele Zanzi (MPI)

Z masses)

• Data in better agreement with SM 0⁺ hypothesis wrt to all other tested models

0⁻ and 1⁺ excluded at >97.8% CL

 $H \rightarrow WW^{(*)} \rightarrow |_{V}|_{V}$ (I=e, μ)

- 1. 2 OS isolated leptons (p_T >25,15 GeV) and large missing transverse momentum
- 2. Categorization based on lepton flavour (e_{μ} + μ e or ee+ $\mu\mu$) and jet multiplicity (0,1, ≥2)
- 3. Very different background composition for each category
- 4. No mass resolution because of the two neutrinos
- 5. "counting experiment": good background estimation is crucial

140

BR(125GeV)=2%

 $A_p \Delta_q \ge \frac{1}{2} t$

300

10

SPIN: 2_{m}^{+} hypothesis excluded at 95-99% CL_S

SM Higgs combination ATLAS-CONF-2013-034

Higgs Boson	Subsequen	Sub-Channels		Ref.	
Decay	Decay		[fb ⁻¹]		
2011 $\sqrt{s} = 7 \text{ TeV}$					
$H \rightarrow ZZ^{(*)}$	4 <i>l</i>	$\{4e, 2e2\mu, 2\mu 2e, 4\mu, 2\text{-jet VBF}, \ell\text{-tag}\}$	4.6	[8]	
$H \rightarrow \gamma \gamma$	_	10 categories	4.8	[7]	
		$\{p_{\mathrm{Tt}} \otimes \eta_{\gamma} \otimes \mathrm{conversion}\} \oplus \{2\text{-jet VBF}\}$			
$H \rightarrow WW^{(*)}$	lvlv	$\{ee, e\mu, \mu e, \mu\mu\} \otimes \{0\text{-jet}, 1\text{-jet}, 2\text{-jet VBF}\}$	4.6	[9]	
	$ au_{ m lep} au_{ m lep}$	$\{e\mu\} \otimes \{0\text{-jet}\} \oplus \{\ell\ell\} \otimes \{1\text{-jet}, 2\text{-jet}, p_{T,\tau\tau} > 100 \text{ GeV}, VH\}$	4.6		
$H \rightarrow \tau \tau$	$ au_{ m lep} au_{ m had}$	$\{e, \mu\} \otimes \{0\text{-jet}, 1\text{-jet}, p_{T,\tau\tau} > 100 \text{ GeV}, 2\text{-jet}\}$	4.6	[10]	
	$ au_{ m had} au_{ m had}$	{1-jet, 2-jet}	4.6		
	$Z \rightarrow \nu \nu$	$E_{\rm T}^{\rm miss} \in \{120 - 160, 160 - 200, \ge 200 \text{ GeV}\} \otimes \{2\text{-jet}, 3\text{-jet}\}$	4.6		
$VH \rightarrow Vbb$	$W \to \ell \nu$	$p_{\rm T}^{W} \in \{< 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$	4.7	[11]	
	$Z \to \ell \ell$	$p_{\rm T}^{\tilde{Z}} \in \{< 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$	4.7		
2012 $\sqrt{s} = 8 \text{ TeV}$					
$H \rightarrow ZZ^{(*)}$	4 <i>l</i>	$\{4e, 2e2\mu, 2\mu 2e, 4\mu, 2-\text{jet VBF}, \ell-\text{tag}\}\}$	20.7	[8]	
$H \rightarrow \gamma \gamma$	-	14 categories	20.7	[7]	
		${p_{\text{Tt}} \otimes \eta_{\gamma} \otimes \text{conversion}} \oplus {2\text{-jet VBF}} \oplus {\ell\text{-tag, } E_{\text{T}}^{\text{miss}}\text{-tag, } 2\text{-jet VH}}$			
$H \rightarrow WW^{(*)}$	lvlv	$\{ee, e\mu, \mu e, \mu\mu\} \otimes \{0\text{-jet}, 1\text{-jet}, 2\text{-jet VBF}\}$	20.7	[9]	
	$ au_{ m lep} au_{ m lep}$	$\{\ell\ell\} \otimes \{1\text{-jet}, 2\text{-jet}, p_{\mathrm{T},\tau\tau} > 100 \text{ GeV}, VH\}$	13	[10]	
	$ au_{ m lep} au_{ m had}$	$\{e, \mu\} \otimes \{0\text{-jet}, 1\text{-jet}, p_{T,\tau\tau} > 100 \text{ GeV}, 2\text{-jet}\}$	13		
$\Pi \rightarrow \eta \eta$	$ au_{ m had} au_{ m had}$	{1-jet, 2-jet}	13		
	$Z \rightarrow \nu \nu$	$E_{\text{T}_{\text{c}}}^{\text{miss}} \in \{120 - 160, 160 - 200, \ge 200 \text{ GeV}\} \otimes \{2\text{-jet}, 3\text{-jet}\}$	13		
$VH \rightarrow Vbb$	$W \to \ell \nu$	$p_{\rm T}^W \in \{< 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$	13	[11]	
	$Z \rightarrow \ell \ell$	$p_T^Z \in \{< 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$	13		

High resolution channels:

- 1. H→ZZ*→4I:
 - m_H=124.3^{+0.6}-0.5(stat) ^{+0.5}-0.3(syst) GeV
 - 4μ (4e)-event momentum resolution ±0.2%(0.4%),
- **2.** H→γγ:
 - m_H=126.8±0.2(stat)±0.7(syst) GeV
 - systematic error dominated by systematic uncert on photon energy scale

Combination: 125.5±0.2(stat)^{+0.5}-0.6</sub>(syst) GeV

 $\Delta m = 2.3^{+0.6}_{-0.7}(stat) \pm 0.6(syst) GeV$ (2.4 σ from $\Delta m=0$)

Signal Strengths ATLAS-CONF-2013-034

Signal strength for individual channels

Fermion vs Vector Coupling

ATLAS-CONF-2013-034

Assumptions:

- Signals observed in different channels originate from single narrow resonance with m_µ=125.5 GeV
- Zero-width approximation: $\sigma xBR(ii \rightarrow H \rightarrow ff) = \sigma_{ii} \cdot \Gamma_{ff} / \Gamma_{H}$
- Tensor structure of the couplings assumed to be SM, only coupling strengths are modified with scale factors k
- 1. Consistent treatment of couplings in Higgs production and decay
- 2. Vector coupling scale factor $k_V = k_W = k_7$
- 3. Fermion coupling scale factor $k_{\rm F} = k_{\rm t} = k_{\rm b} = k_{\rm c} = k_{\rm c}$
- 4. Only SM contributions in $H \rightarrow \gamma \gamma$ and $gg \rightarrow H$ loops and in Higgs decays
- 5. 8% compatibility with SM hypothesis
- 6. Vector coupling $k_{\rm V}$ directly and indirectly constrained
- 7. Fermion coupling $k_{\rm F}$ still not directly constrained, but only indirectly from ggF-dominated channels

- 1. Preliminary results based on full 2012 datasets in $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ^* \rightarrow 4I$ and $H \rightarrow WW^* \rightarrow I_V I_V$
- 2. Independent observations in all three channels
- 3. $m_H = 125.5 \pm 0.2(stat)^{+0.5}_{-0.6}(syst) \text{ GeV}$
- 4. $\mu = 1.30 \pm 0.13(\text{stat}) \pm 0.14(\text{syst})$
- 5. $\mu_{VBF+VH}/\mu_{ggF+ttH} = 1.2^{+0.7}_{-0.5}$
- 6. 3.1 σ evidence of VBF production
- 7. Higgs couplings consistent with SM within 2σ
- 8. SM 0⁺ hypothesis preferred against 0⁻,1[±] and 2[±]

⇒ VERY SM-like…

Summary

Summary

(*) "IT" means A Higgs boson, responsible for the Higgs mechanism Next question: is this THE SM Higgs boson? are there others??