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ATLAS Monitored Drift Tube (MDT) Chambers

@ 30 mm tube diameter

@ gas mixture: Ar/CO2 (93/7) bei
3 bar absolutem Druck

Al tube wall

3or4
drift tube

@ max. drift time: ~ 700 ns
without radiation background:
@ tube resolution: 80 pm

@ chamber tracking resolution:
~ 40 um

photon flux [kHz/cm?]

Challenge:

@ High photon and neutron background
@ Max. expected rate at HL-LHC: 14 kHz/cm?



High Rate Effects

Occupancy
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Drift gas Ar/CO» (93/7):
@ no ageing effects
o non-linear r(t) relationship

in the following:
Comparison of @30 mm MDT with g15mm sMDT

Occupancy:
occupancy = counting rate x max. drift time

@ maximum drift time:
o 30mm MDT: 700 ns
o 15mm sMDT: 185ns

= gain a factor 3.8
@ counting rate:
= gain a factor 2 due to tube cross section

Space-drift time relationship r(t) for drift tubes with
15mm galmost linear!
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High Rate Effects

Deadtime
@ Slowly drifting ions cause long @ One hit can cause multiple threshold
pulse tail crossings
g O 3 = adjustable dead time in front-end electronics
g long ion tai E = dead time masks consecutive hits
% : @ pulse length ~ tube diameter
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High Rate Effects

Signal Pile-up

@ good efficiency requires short dead time
but: signal pulses are affected by preceding background pulses
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= systematic shift depending on pulse shape and time difference
@ can be partially corrected. better: optimized signal shaping
o for large signal amplitude variations, hits can go missing
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High

Drop of t

Rate Effects

he Gas Amplification

The ions drifting outwards attenuate the electric field needed for the gas amplification

0

Relative gas gain G/G
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r amplification with Diethorn formula:
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@ Space charge effects ~ R® for photons, ~ R* for charged hadrons
@ In ATLAS photons dominant background
=- gain a factor 8 in rate capability



High Rate Effects

Space Charge Fluctuations

a further effect due to space charge
@ space charge fluctuates in time
= drift properties vary while drifting
= degradation of the resolution ~ drift time/radius
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Effect is virtually eliminated for tubes with 15 mm diameter.



Measurements in the Gamma Irradiation Facility (CERN)

Method of Measurement

No muon beam in the GIF:
@ shielded tubes for precise tracking of cosmic ray muons
@ extrapolate muon tracks to irradiated tubes

tracking

analysls

Scintillator Layer

Resolution and efficiency from off-track residuals:
@ correct for tracking resolution and multiple scattering = single tube resolution o
@ determine the 30 single tube efficiency.
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Measurement Results

Gas Amplification

rn . Q r T T T T
2 methods to measure the amplification: Pt e
> n= 1482438
@ fromcurrent/ = R- Q- G, with 5 e
. . . . sg= *
R: counting rate, Q: ionisation charge, G: ® sz 321519

amplification

@ from ADC measurement (relative):
drop of amplification =- shift of the charge
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Measurement Results

single tube resolution:
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@ Reducing the tube diameter brings huge improvement

@ Further improvement possible with optimized signal shaping

Additional improvement due to smaller tube diameter:

more tube layers fit into the same volume

=> more robust pattern recognition, better tracking resolution
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Rate Measurement for Upgrade Plans

Two sMDT chambers installed in ATLAS in the winter shutdown 2011/12

Predicting the background rates is difficult because of
uncertainties in:

@ detector sensitivities to radiation background and
@ composition of the background radiation.

Therefore, a SMDT chamber was installed in the hottest
region to directly measure the predominant background.

@ 1 multilayer consisting of 4
tube layers

@ 96 tubes in total

@ 4 high voltage segments for
segmented rate
measurement
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Rate Measurement Methods

Two independent methods:

Hit counting method:

@ Count number of hits 7, in a time window of length #,i,q0 in individual tubes
@ rlevenis: total number of events/triggers, /- : tube length, d, . : tube diameter

> | Hitrate[Hz/cm?] = Mhits 1

twindow *Mevents  hube - Chube

High voltage current method:

@ The current drawn by 7 cs tubes is: | = Mypes * R+ Gprim - G
@ A:hitrate, gy, primary ionization charge, G: gas gain

; 21 _ Mupes'! 1
= | Hitrate[Hz/cm?] = q;i:jG S T
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Rate Measurement

Example of HV current in tubes experiencing the highest rates:
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For better comparison: Convert both measurements to the background flux (next slide).

14/17



Rate Analysis for Upgrade Considerations

Background rates in the Small Wheels (hottest regions)

Hit Rate [Hz/cn?]
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@ The two measurement methods agree perfectly

@ sMDT rate follows CSC rate and is slightly higher (due to higher background
sensitivity) . ..

@ ...however not as much as it was expected from the MDT
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Afterglow measurement

Measurement of the decay constant(s) of the cavern background

Fit the current before and after the beam dump (t = 0):
t < 0: with a 1st order polynomial hefore (t) and

t > 0: with two exponential decay functions and constant dark current:
latter (1) = A~ exp(—t/71) + B - exp(—t/72) + C

Did this for several runs with the high

g
- X ;%' - Data ATLAS Internal 4
voltage kept at its operating value for up g — Fittodara LHC fil 2536, 2000412
to four hours after the beam dump. 5 203466 E
C=27%00 7

Results: 102 X1, 654175960

Fit probabilty = 0.003

(1) = (204 + 3)s
(12) = (13755 + 577)
Afterglow rate = ’be'we = (55+0.1)%
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Possible isotopes are JAl (r = 194 s) and 3Mn (7 = 13392s). Both can be produced in
fast and thermal neutron activation and occur in the detectors and the mounting and
shielding material.

o
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Summary

@ Resolution and efficiency of drift tube chambers deteriorate at high radiation
background due to:

@ signal pile-up of consecutive hits

o drop of the gas amplification due to space charge
o space charge fluctuations

@ masking of hits due to the dead time

@ Reducing the tube diameter from 30 to 15 mm very effective:

o shorter dead time possible (790 ns — 185ns)
o factor 8 less drop of gas amplification
o effects of space charge fluctuations virtually eliminated

@ Further improvement possible with optimized signal shaping
o new front-end chip development started
@ Successful operation of a sMDT chamber in the ATLAS cavern for several months.

o background rate measurements for upgrades with two methods
o determined life-times of the cavern afterglow which could be identified with two possible
isotops.

Thank you!
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