Dynamical Black Holes in Topologically Massive Gravity

Mario Flory

LMU Munich Supervisor: Prof. Ivo Sachs

26.11.2012

MARIO FLORY

Dynamical Black Holes in TMG

Topologically Massive Gravity

• Action:

$$S = \frac{1}{16\pi G_N} \int d^3x \sqrt{-g} \left(R + \frac{2}{l^2} \right) + \frac{1}{32\mu\pi G_N} \int d^3x \sqrt{-g} \epsilon^{\lambda\mu\nu} \Gamma^{\rho}_{\lambda\sigma} \left(\partial_{\mu} \Gamma^{\sigma}_{\nu\rho} + \frac{2}{3} \Gamma^{\sigma}_{\mu\tau} \Gamma^{\tau}_{\nu\rho} \right)$$

• Equations of motion (EOM):

$$\begin{split} G_{\mu\nu} + \frac{1}{\mu} C_{\mu\nu} &= 0 \text{ with } G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R - \frac{1}{l^2} g_{\mu\nu} \\ \text{ and } C_{\mu\nu} &= \varepsilon_{\mu}{}^{\kappa\sigma} \nabla_{\kappa} \big(R_{\sigma\nu} - \frac{1}{4} g_{\sigma\nu} R \big) \end{split}$$

[Deser, Jackiw, Tempelton 1982]

MARIO FLORY

Dynamical Black Holes in TMG

- Stationary black holes similar to Kerr metric known [Bañados, Teitelboim, Zanelli 1992]
- $G_{\mu\nu} = 0$ and $C_{\mu\nu} = 0$ separately for these solutions

• For
$$M = 1$$
, $J = 0$ and $I = 1$:
 $ds^2 = -\sinh^2 \rho \ dt^2 + \cosh^2 \rho \ d\phi^2 + d\rho^2 \equiv \bar{g}_{\mu\nu} dx^{\mu} dx^{\nu}$ [Sachs 2011]

• Non trivial linear perturbations given by $\epsilon_{\mu}^{\ \alpha\beta}\nabla_{\alpha}h_{\beta\nu} + \mu h_{\mu\nu} = 0$ [Li, Song, Strominger 2008]

- Stationary black holes similar to Kerr metric known [Bañados, Teitelboim, Zanelli 1992]
- $G_{\mu\nu} = 0$ and $C_{\mu\nu} = 0$ separately for these solutions

• For
$$M = 1$$
, $J = 0$ and $I = 1$:
 $ds^2 = -\sinh^2 \rho \ dt^2 + \cosh^2 \rho \ d\phi^2 + d\rho^2 \equiv \bar{g}_{\mu\nu} dx^{\mu} dx^{\nu}$ [Sachs 2011]

• Non trivial linear perturbations given by $\epsilon_{\mu}^{\ \alpha\beta}\nabla_{\alpha}h_{\beta\nu} + \mu h_{\mu\nu} = 0$ [Li, Song, Strominger 2008]

MARIO FLORY

Dynamical Black Holes in TMG

- Stationary black holes similar to Kerr metric known [Bañados, Teitelboim, Zanelli 1992]
- $G_{\mu\nu} = 0$ and $C_{\mu\nu} = 0$ separately for these solutions

• For
$$M = 1$$
, $J = 0$ and $I = 1$:
 $ds^2 = -\sinh^2 \rho \ dt^2 + \cosh^2 \rho \ d\phi^2 + d\rho^2 \equiv \bar{g}_{\mu\nu} dx^{\mu} dx^{\nu}$ [Sachs 2011]

• Non trivial linear perturbations given by $\epsilon_{\mu}^{\ \alpha\beta}\nabla_{\alpha}h_{\beta\nu} + \mu h_{\mu\nu} = 0$ [Li, Song, Strominger 2008]

Mario Flory

Dynamical Black Holes in TMG

- Stationary black holes similar to Kerr metric known [Bañados, Teitelboim, Zanelli 1992]
- $G_{\mu\nu} = 0$ and $C_{\mu\nu} = 0$ separately for these solutions
- For M = 1, J = 0 and I = 1: $ds^2 = -\sinh^2 \rho \ dt^2 + \cosh^2 \rho \ d\phi^2 + d\rho^2 \equiv \bar{g}_{\mu\nu} dx^{\mu} dx^{\nu}$ [Sachs 2011]
- Non trivial linear perturbations given by $\epsilon_{\mu}^{\ \alpha\beta}\nabla_{\alpha}h_{\beta\nu} + \mu h_{\mu\nu} = 0$ [Li, Song, Strominger 2008]

MARIO FLORY

Dynamical Black Holes in TMG

Motivation

For one of these solutions the metric $g_{\mu\nu} = \bar{g}_{\mu\nu} + h_{\mu\nu}$ turns out to be a solution of the exact EOM of TMG:

$$\mathcal{G}_{\mu
u}+rac{1}{\mu}\mathcal{C}_{\mu
u}= \mathsf{0} \,\, \mathsf{with} \,\, \mathcal{G}_{\mu
u}=rac{1-\mu^2}{2}h_{\mu
u}$$

[Sachs 2011]

- What kind of metric is this?
- What properties does $g_{\mu\nu}$ inherit form the background $\bar{g}_{\mu\nu}$?
- What happens for the special values $\mu = \pm 1$?

MARIO FLORY

Dynamical Black Holes in TMG

Motivation

For one of these solutions the metric $g_{\mu\nu} = \bar{g}_{\mu\nu} + h_{\mu\nu}$ turns out to be a solution of the exact EOM of TMG:

$$\mathcal{G}_{\mu
u}+rac{1}{\mu}\mathcal{C}_{\mu
u}= \mathsf{0} ext{ with } \mathcal{G}_{\mu
u}=rac{1-\mu^2}{2}h_{\mu
u}$$

[Sachs 2011]

• What kind of metric is this?

- What properties does $g_{\mu\nu}$ inherit form the background $\bar{g}_{\mu\nu}$?
- What happens for the special values $\mu = \pm 1$?

MARIO FLORY

Dynamical Black Holes in TMG

GLOBAL STRUCTURE

ENTROPY

Motivation

For one of these solutions the metric $g_{\mu\nu} = \bar{g}_{\mu\nu} + h_{\mu\nu}$ turns out to be a solution of the exact EOM of TMG:

$$\mathcal{G}_{\mu
u}+rac{1}{\mu}\mathcal{C}_{\mu
u}= 0 ext{ with } \mathcal{G}_{\mu
u}=rac{1-\mu^2}{2}h_{\mu
u}$$

[Sachs 2011]

- What kind of metric is this?
- What properties does $g_{\mu\nu}$ inherit form the background $\bar{g}_{\mu\nu}$?
- What happens for the special values $\mu = \pm 1$?

MARIO FLORY

Dynamical Black Holes in TMG

GLOBAL STRUCTURE

ENTROPY

DISCUSSION

Motivation

For one of these solutions the metric $g_{\mu\nu} = \bar{g}_{\mu\nu} + h_{\mu\nu}$ turns out to be a solution of the exact EOM of TMG:

$$\mathcal{G}_{\mu
u}+rac{1}{\mu}\mathcal{C}_{\mu
u}=0$$
 with $\mathcal{G}_{\mu
u}=rac{1-\mu^2}{2}h_{\mu
u}$

[Sachs 2011]

- What kind of metric is this?
- What properties does $g_{\mu\nu}$ inherit form the background $\bar{g}_{\mu\nu}$?
- What happens for the special values $\mu = \pm 1$?

MARIO FLORY

Dynamical Black Holes in TMG

Global Coordinates

By introducing the coordinates

$$z = e^{-t} rac{1}{\sinh(
ho)}$$
 , $R = e^{-2t} \coth^2(
ho)$, $y = \phi + t + \log[\tanh(
ho)]$

the metric takes the form:

$$ds^{2} = \underbrace{\frac{1}{z^{2}} \left(dz^{2} + dy dR + R dy^{2} \right)}_{\bar{g}_{\mu\nu} dx^{\mu} dx^{\nu}} + \underbrace{\frac{1}{z^{1+\mu}} dy^{2}}_{h_{\mu\nu} dx^{\mu} dx^{\nu}}$$

• y is the new angular coordinate, $\partial_{\phi} = \partial_y$, $y \sim y + 2\pi$, z > 0, $-\infty < R < \infty$

- R is a measure of time, smaller values of R correspond to the future
- Closed causal curves for $R \leq -z^{1-\mu}$

Mario Flory

Dynamical Black Holes in TMG

Global Coordinates

By introducing the coordinates

$$z = e^{-t} rac{1}{\sinh(
ho)}$$
 , $R = e^{-2t} \coth^2(
ho)$, $y = \phi + t + \log[\tanh(
ho)]$

the metric takes the form:

$$ds^{2} = \underbrace{\frac{1}{z^{2}} \left(dz^{2} + dy dR + R dy^{2} \right)}_{\overline{g}_{\mu\nu} dx^{\mu} dx^{\nu}} + \underbrace{\frac{1}{z^{1+\mu}} dy^{2}}_{h_{\mu\nu} dx^{\mu} dx^{\nu}}$$

• y is the new angular coordinate, $\partial_\phi = \partial_y$, $y \sim y + 2\pi$, z > 0, $-\infty < R < \infty$

• R is a measure of time, smaller values of R correspond to the future

• Closed causal curves for $R \leq -z^{1-\mu}$

Mario Flory

Dynamical Black Holes in TMG

Global Coordinates

By introducing the coordinates

$$z = e^{-t} rac{1}{\sinh(
ho)}$$
 , $R = e^{-2t} \coth^2(
ho)$, $y = \phi + t + \log[\tanh(
ho)]$

the metric takes the form:

$$ds^{2} = \underbrace{\frac{1}{z^{2}} \left(dz^{2} + dydR + Rdy^{2} \right)}_{\overline{g}_{\mu\nu} dx^{\mu} dx^{\nu}} + \underbrace{\frac{1}{z^{1+\mu}} dy^{2}}_{h_{\mu\nu} dx^{\mu} dx^{\nu}}$$

• y is the new angular coordinate, $\partial_\phi = \partial_y$, $y \sim y + 2\pi$, z > 0, $-\infty < R < \infty$

- R is a measure of time, smaller values of R correspond to the future
- Closed causal curves for $R \leq -z^{1-\mu}$

Mario Flory

Dynamical Black Holes in TMG

Global Coordinates

By introducing the coordinates

$$z = e^{-t} rac{1}{\sinh(
ho)}$$
 , $R = e^{-2t} \coth^2(
ho)$, $y = \phi + t + \log[\tanh(
ho)]$

the metric takes the form:

$$ds^{2} = \underbrace{\frac{1}{z^{2}} \left(dz^{2} + dydR + Rdy^{2} \right)}_{\overline{g}_{\mu\nu} dx^{\mu} dx^{\nu}} + \underbrace{\frac{1}{z^{1+\mu}} dy^{2}}_{h_{\mu\nu} dx^{\mu} dx^{\nu}}$$

- y is the new angular coordinate, $\partial_\phi = \partial_y$, $y \sim y + 2\pi$, z > 0, $-\infty < R < \infty$
- R is a measure of time, smaller values of R correspond to the future
- Closed causal curves for $R \leq -z^{1-\mu}$

MARIO FLORY

Dynamical Black Holes in TMG

Diagrams for $\mu = 1/2$ (left) and $\mu = -3/2$ (right)

Singularity: red, Event and Cauchy horizons: solid black, Marginally trapped surfaces: dashed black

Circumference of Outer Horizon

Horizon radius ($r \equiv \frac{1}{2\pi} \cdot circumference$) as function of z for $\mu = 1/2$ (solid), and $\mu = -3/2$ (dashed):

MARIO FLORY

Dynamical Black Holes in TMG

- In TMG, the entropy of stationary black holes is $S = S_{EH} + S_{CS}$ with $S_{EH} = \frac{1}{4G_N} \mathcal{A}$ and $S_{CS} = \frac{1}{8\mu G_N} \int_{\Sigma} \epsilon^{\nu\mu} \Gamma_{\mu\nu\rho} dx^{\rho}$. [Tachikawa 2007]
- Ansatz for the calculation of the entropy of dynamic black holes: [Wald, lyer 1994]
 - Introduce a transformation that creates a new metric in which the horizon cross section Σ is embedded as a bifurcation surface of a stationary black hole.
 - Calculate the entropy with respect to Σ using the appropriate formula for the stationary case.

- In TMG, the entropy of stationary black holes is $S = S_{EH} + S_{CS}$ with $S_{EH} = \frac{1}{4G_N} \mathcal{A}$ and $S_{CS} = \frac{1}{8\mu G_N} \int_{\Sigma} \epsilon^{\nu\mu} \Gamma_{\mu\nu\rho} dx^{\rho}$. [Tachikawa 2007]
- Ansatz for the calculation of the entropy of dynamic black holes: [Wald, lyer 1994]
 - Introduce a transformation that creates a new metric in which the horizon cross section Σ is embedded as a bifurcation surface of a stationary black hole.
 - Calculate the entropy with respect to Σ using the appropriate formula for the stationary case.

- In TMG, the entropy of stationary black holes is $S = S_{EH} + S_{CS}$ with $S_{EH} = \frac{1}{4G_N} \mathcal{A}$ and $S_{CS} = \frac{1}{8\mu G_N} \int_{\Sigma} \epsilon^{\nu\mu} \Gamma_{\mu\nu\rho} dx^{\rho}$. [Tachikawa 2007]
- Ansatz for the calculation of the entropy of dynamic black holes: [Wald, lyer 1994]
 - Introduce a transformation that creates a new metric in which the horizon cross section Σ is embedded as a bifurcation surface of a stationary black hole.
 - Calculate the entropy with respect to Σ using the appropriate formula for the stationary case.

- In TMG, the entropy of stationary black holes is $S = S_{EH} + S_{CS}$ with $S_{EH} = \frac{1}{4G_N} \mathcal{A}$ and $S_{CS} = \frac{1}{8\mu G_N} \int_{\Sigma} \epsilon^{\nu\mu} \Gamma_{\mu\nu\rho} dx^{\rho}$. [Tachikawa 2007]
- Ansatz for the calculation of the entropy of dynamic black holes: [Wald, lyer 1994]
 - Introduce a transformation that creates a new metric in which the horizon cross section Σ is embedded as a bifurcation surface of a stationary black hole.
 - Calculate the entropy with respect to Σ using the appropriate formula for the stationary case.

Dynamic Entropy

Numerical calculations of dynamical entropy using this ansatz for $\mu=1/2$ (left) and $\mu=-3/2$ (right).

 $S_{EH} \sim \mathcal{A}$: dashed blue, S_{CS} : dot-dashed purple, $S = S_{EH} + S_{CS}$: solid red.

- For TMG, some solutions of the linerized EOM also seem to describe exact solutions of the full EOM.
- $g_{\mu\nu}$ describes a dynamical black hole, with a BTZ-like global stucture.
- The event horizon circumference is non-constant for generic values of μ .
- For certain values of μ , the time-dependent entropy is decreasing.

- Why does *S* decrease?
- What is the correct definition for dynamical entropy?
- Is there a connection between solutions of the linearized and exact EOMs?

- For TMG, some solutions of the linerized EOM also seem to describe exact solutions of the full EOM.
- $g_{\mu\nu}$ describes a dynamical black hole, with a BTZ-like global stucture.
- The event horizon circumference is non-constant for generic values of μ .
- For certain values of μ , the time-dependent entropy is decreasing.

- Why does *S* decrease?
- What is the correct definition for dynamical entropy?
- Is there a connection between solutions of the linearized and exact EOMs?

- For TMG, some solutions of the linerized EOM also seem to describe exact solutions of the full EOM.
- $g_{\mu\nu}$ describes a dynamical black hole, with a BTZ-like global stucture.
- The event horizon circumference is non-constant for generic values of μ .
- For certain values of μ , the time-dependent entropy is decreasing.

- Why does *S* decrease?
- What is the correct definition for dynamical entropy?
- Is there a connection between solutions of the linearized and exact EOMs?

- For TMG, some solutions of the linerized EOM also seem to describe exact solutions of the full EOM.
- $g_{\mu\nu}$ describes a dynamical black hole, with a BTZ-like global stucture.
- The event horizon circumference is non-constant for generic values of μ .
- For certain values of μ , the time-dependent entropy is decreasing.

- Why does *S* decrease?
- What is the correct definition for dynamical entropy?
- Is there a connection between solutions of the linearized and exact EOMs?

- For TMG, some solutions of the linerized EOM also seem to describe exact solutions of the full EOM.
- $g_{\mu\nu}$ describes a dynamical black hole, with a BTZ-like global stucture.
- The event horizon circumference is non-constant for generic values of μ .
- For certain values of μ , the time-dependent entropy is decreasing.

- Why does S decrease?
- What is the correct definition for dynamical entropy?
- Is there a connection between solutions of the linearized and exact EOMs?

- For TMG, some solutions of the linerized EOM also seem to describe exact solutions of the full EOM.
- $g_{\mu\nu}$ describes a dynamical black hole, with a BTZ-like global stucture.
- The event horizon circumference is non-constant for generic values of μ .
- For certain values of μ , the time-dependent entropy is decreasing.

Outlook

- Why does S decrease?
- What is the correct definition for dynamical entropy?

• Is there a connection between solutions of the linearized and exact EOMs?

- For TMG, some solutions of the linerized EOM also seem to describe exact solutions of the full EOM.
- $g_{\mu\nu}$ describes a dynamical black hole, with a BTZ-like global stucture.
- The event horizon circumference is non-constant for generic values of μ .
- For certain values of μ , the time-dependent entropy is decreasing.

- Why does S decrease?
- What is the correct definition for dynamical entropy?
- Is there a connection between solutions of the linearized and exact EOMs?

Thank you for your attention.

Details of the Solution

For the metric
$$g_{\mu\nu} = \bar{g}_{\mu\nu} + h_{\mu\nu}$$
 with $\bar{g}_{\mu\nu} = \begin{pmatrix} -\sinh^2 \rho & 0 & 0 \\ 0 & \cosh^2 \rho & 0 \\ 0 & 0 & 1 \end{pmatrix}$ and
 $h_{\mu\nu} = e^{(1+\mu)t} (\sinh \rho)^{1+\mu} \begin{pmatrix} 1 & 1 & \frac{2}{\sinh(2\rho)} \\ 1 & 1 & \frac{2}{\sinh(2\rho)} \\ \frac{2}{\sinh(2\rho)} & \frac{2}{\sinh^2(2\rho)} \end{pmatrix}$, it follows:
 $R = \bar{R} = -6$, $G_{\mu\nu} = -\frac{1}{\mu}C_{\mu\nu}$, $G_{\mu\nu} = \frac{1-\mu^2}{2}h_{\mu\nu}$

Note that we can write $h_{\mu\nu} = I_{\mu}I_{\nu} = f(t, \phi, \rho) \xi_{\mu}\xi_{\nu}$ where I_{μ} is a null vector, and ξ_{μ} is a null Killing vector of $\bar{g}_{\mu\nu}$ and $g_{\mu\nu}$ as well. [Sachs 2011]

MARIO FLORY

Dynamical Black Holes in TMG

A Note on Energy Conditions

Because of the equations of motion $G_{\mu\nu} = -\frac{1}{\mu}C_{\mu\nu}$, we can use theorems that were derived for Einstein gravity with $\Lambda = 0$ (e.g. the area theorem) when we use $-\frac{1}{\mu}C_{\mu\nu} + \frac{1}{l^2}g_{\mu\nu}$ as a substitute for the energy-momentum tensor $T_{\mu\nu}$. For an arbitrary any null vector k^{μ} we therefore find

$$T_{\mu
u}k^{\mu}k^{
u}=rac{1-\mu^2}{2}h_{\mu
u}k^{\mu}k^{
u}$$

Since we can write $h_{\mu\nu} = l_{\mu}l_{\nu}$ it follows that $h_{\mu\nu}k^{\mu}k^{\nu} = (l_{\mu}k^{\mu})^2 \ge 0$. For this reason, the weak energy condition for example is only satisfied for $|\mu| \le 1$ while it is violated for $|\mu| > 1$.

MARIO FLORY

Dynamical Black Holes in TMG

Special Values: $\mu = +1$

Because of $G_{\mu\nu} = \frac{1-\mu^2}{2}h_{\mu\nu}$, the metric is a solution not only of TMG, but also of Einsteinian gravity for $\mu = \pm 1$. It is natural to ask whether it is a new solution for these cases or whether it reduces to already known ones.

For $\mu = +1$ the metric takes the form:

$$ds^{2} = \frac{1}{z^{2}} \left(dz^{2} + dydR + Rdy^{2} \right) + \frac{1}{z^{2}} dy^{2}$$

This can be related to the background metric (BTZ with M = 1, J = 0) by a simple shift in the coordinate R.

MARIO FLORY

Dynamical Black Holes in TMG

Special Values: $\mu = -1$

For $\mu = -1$, the relation to already known solutions is not that obvious. When calculating the horizons, we find:

- Horizons and marginally trapped surfaces are identical
- The outer horizon has radius r₊ = const. ≈ 1.61803 while the inner horizon has r₋ = const. ≈ 0.61803
- The metric now has additional Killing vectors and is stationary.

All of this seems to imply that for $\mu = -1$, the metric is just a BTZ black hole with M = 3 and |J| = 2. Indeed, a coordinate transformation relating the two metrics can be found.

MARIO FLORY

Dynamical Black Holes in TMG

Event Horizon - Definition

In an asymptotically flat spacetime, there is a future null infinity \mathcal{I}^+ . The *event horizon* of a black hole is then defined to be the boundary of the past of \mathcal{I}^+ .

[Hawking 1994]

DISCUSSION

Horizons

- As the given metric is not asymptotically flat, there is no \mathcal{I}^+
- For the (asymptotically AdS) background-metric, the line z = 0, R ≥ 0 corresponds to infinity
- $\bullet\,$ Our new metric is asymtotically AdS for $\mu < -1$
- We use the line z = 0, $R \ge 0$ as our infinity for all $\mu < 1$.

MARIO FLORY

Dynamical Black Holes in TMG

Marginally Trapped Surfaces - Definition

- A trapped surface is a closed, orientable, smooth, spacelike, co-dimension two submanifold S, s.t. both families of future directed null geodesics orthogonal to S (i.e. "ingoers" n^μ and "outgoers" k^μ) have expansions θ_n = n^α_{;α} < 0, θ_k = k^α_{;α} < 0.
- Here, we define a marginally trapped surface to be a closed, orientable, smooth, spacelike, co-dimension two submanifold *S*, s.t. one of the families of future directed null geodesics orthogonal to *S* has expansion $\theta = 0$ while the other family has $\theta < 0$.

[Frolov, Novikov 1998]

MARIO FLORY

Dynamical Black Holes in TMG

Generating the new space time à la [Wald, lyer 1994]

- Introduce new coordinates U and V s.t. ∂_U and ∂_V are the null vectors orthogonal to Σ , and U = V = 0 on Σ . In old coordinates, we denote these by I^{μ} and n^{μ} .
- The Taylor expansion in U, V of the metric around Σ reads in old coordinates:

$$g_{ab} = \sum_{n,m=0}^{\infty} \frac{U^m V^n}{m!n!} \underbrace{\sum_{\alpha\beta} \left(\frac{\partial^{m+n} g_{\alpha\beta}}{\partial U^m \partial V^n} (dx^{\alpha})_a (dx^{\beta})_b \right)}_{I^{c_1} \dots I^{c_m} n^{c_{m+1}} \dots n^{c_{m+n}} \partial_{c_1} \dots \partial_{c_{m+n}} g_{ab}|_{\Sigma}}$$

• Then, in this series, the terms $\partial_{c_1} \cdots \partial_{c_{m+n}} g_{ab}|_{\Sigma}$ are replaced by their *boost invariant parts*. This gives the new metric g_{ab}^{I} .

Generating the new space time à la [Wald, lyer 1994]

- For the thereby constructed metric g'_{ab} , the vector field $\eta = U\partial_U V\partial_V$ is a Killing vector field $(\mathcal{L}_{\eta}g'_{ab} = 0)$.
- η obviously vanishes on Σ , where U = V = 0.
- In the new metric g^l_{ab}, the horizon cross section Σ therefore is the bifurcation surface of a Killing horizon.
- Because of linearity, we can calculate $(\partial_c g_{ab})^{I}$ instead of $\partial_c (g_{ab}^{I})$ in our expression for $\Gamma_{\alpha\beta\gamma}$.
- Also, because of $g_{ab}^{I}|_{\Sigma} = g_{ab}|_{\Sigma}$ we can use the original metric to raise and lower indices in our expression for the entropy.

MARIO FLORY

- S. Deser, R. Jackiw and S. Tempelton, Phys. Rev. Lett. 48 (1982)
 975; S. Deser, R.Jackiw and S. Tempelton, Annals Phys. 140 (1982)
 372.
- M. Bañados, C. Teitelboim, and J. Zanelli, Phys. Rev. Lett. 69 (1992) 1849 [arXiv:hep-th/9204099]
- W. Li, W. Song, A. Strominger, JHEP 0804 (2008) 082 [arXiv:0801.4566]
- 🔋 I. Sachs, arXiv:1108.3579 [hep-th]
- 🔋 S.W. Hawking, arXiv:9409195v1 [hep-th]
- V.P. Frolov, I.D. Novikov, *Black Hole Pysics*, Kluwer Academic Publishers, 1998
- R.M. Wald, V. Iyer, Phys. Rev. D 50 (1994) 846 [arXiv:9403028]
- 📔 Y. Tachikawa, Class. Quant. Grav. 27 (2007) 737 [arXiv:0611141]