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Motivation to massive gravity

Why massive gravity?

A possible solution to the cosmological constant problem.

What is the cosmological constant problem?

What is the vacuum persistence?
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The cosmological constant problem

The Einstein equations from general relativity

Gµν + Λgµν = 8πGNTµν (1)

Λ ≤ 10−48GeV 4 (2)

by the observation.

The vacuum energy density from quantum field theory

Λ ∼ E 4
UV ≥ 102GeV 4 at EW scale (3)

Discrepancy is at least of order of 56!!
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Massive gravity in action

The gravitational potential

V (r) ∼ 1

r
e−mr (4)

Explains the smallness of the observed value of the vacuum energy
density
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Massive gravity in a bigger set-up

View massive gravity as an effective description of some underlying
theory.

The underlying theory does not necessarily violate 4-dimensional
general covariance (e.g. DGP-model).
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Vacuum persistence amplitude (VPA)

Vacuum to vacuum transition, given there exist external sources
exchanging a particle

〈0|0〉J ∼ exp
{∫

J(x)G (x , y)J(y)
}

(5)

J is an external source. For any sensible quantum theory the mod of
this expression is constrained to lie between zero and one.
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Outline

Massive gravity in flat background

Vacuum in curved background

Massive gravity in de Sitter background
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1. Massive gravity in flat background -Linearized gravity

Massless gravity from the Einstein-Hilbert action

S = M2
pl

∫
d4x
√
−gR (6)

Linearize the action in flat background

gµν(x) = ηµν + hµν(x), for |hµν | << 1 (7)

S = −1

2

∫
d4x hµνεµν,ρσh

ρσ (8)

after canonical normalization.
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1. Massive gravity in flat background - Mass term

Include a generic mass term into the action

S = −1

2

∫
d4x

[
hµνεµν,ρσh

ρσ + m2(αhµνh
µν + βh2)

]
(9)

where α and β are arbitrary real coefficients, and have to be tuned for
stability of the theory.

Two ways of tuning coefficients:

1. decompose hµν into tensor, vector and scalar components
2. Stueckelberg formalism
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1. Massive gravity in flat bakcground - Fierz-Pauli theory

Fierz-Pauli form of the mass term

Lm = −1

2
m2(hµνh

µν − h2) (10)
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1. Massive gravity in flat background - VPA (1)

VPA of the massive spin-2 in flat background

〈0|0〉T = exp
{ i

2

∫
d4x

∫
d4x ′Tµν(x)Gµν,ρσ(x , x ′)T ρσ(x ′)

}
(11)
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1. Massive gravity in flat background - VPA (2)

VPA in momentum space

〈0|0〉T = exp
{ i

2

∫
d4k

(2π)4

|Tµν |2 − 1
3 |T |

2

k2 + m2 − iε

}
(12)

Q: How do we evaluate this integral?

A: The easiest one is by specifying the external source

Tµν(x) = Mδµ0 δ
ν
0δ

(3)(x) (13)
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1. Massive gravity in flat background - VPA (3)

Taking the Wick rotation, the amplitude simplified

〈0|0〉T = exp
{
−1

3

∫
d4k

(2π)4

1

k2 + m2
|T (k)|2

}
(14)

k2 has an Euclidean signature, so the integrand is strictly positive.

Massive gravity in flat spacetime is a healthy theory at the tree level!!
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2. Vacuum in curved background (1)

Symmetry groups of spacetime

1. Flat - Poincare group
2. Curved - General Covariance

No canonical choice of timelike killing vectors in GR
-Bogolyubov transformations
-No preferred basis in Hilbert space

A vacuum w.r.t. an “a-particle” state is not necessarily a vacuum
w.r.t. a “b-particle” state.
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2. Vacuum in curved background (2)

Still can approximately analyze the vacuum stability with imposing
some special conditions on the background.

A non-minimally coupled free massive scalar field theory in flat FRW
universe

S = −1

2

∫
dηd3x

[
∂µφ∂µφ+

(
m2a2 − (1− 6ξ)

a′′

a

)
φ2
]

(15)

Effective mass term changes w.r.t. a (conformal) time.
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2. Adiabatic vacuum (1)

EOM for a harmonic oscillator

φ′′k +
(
k2 + m2a2 − (1− 6ξ)

a′′

a

)
φk = 0 (16)

Difficult to choose a basis. One can assume the slow expansion of the
universe, and the solution is of a WKB type.

We solve up to a second adiabatic order and its corresponding
vacuum is a “second adiabatic vacuum”.
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2. Adiabatic vacuum (2)

Slow expansion of the universe? Comparing to what?

Assume the period of oscillation much smaller then the adiabatic time
T (Hubble time); i.e., the wavelength of the scalar field much smaller
than the Hubble radius

λk << H−1 (17)

In de Sitter spacetime, this relation translates into the comparison
between size of the normal neighborhood and the curvature scale

y2 << Λ (18)
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3. Massive gravity in de Sitter background - Linearization

Linearized EH (after canonical normalization)

LEH = ∇σhαρ∇αhρσ −
1

2
∇σhαρ∇σhαρ +

1

2
(∇ρh − 2∇αhρα)∇ρh

− 1

2

(
hαβhαβ −

1

2
h2
)

(R− 2Λ) +
(

2hασhβσ − hhαβ
)
Rαβ(19)

Non-minimal coupling

Lξ = −1

2
ξR(hµνh

µν − h2) (20)

Mass

Lm = −1

2
m2(hµνh

µν − h2) (21)
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3. Massive gravity in de Sitter background - VPA

Source term
LT = hµνT

µν (22)

Action

S =

∫
d4x ′

√
−g ′

[
LEH + Lm + Lξ + LT

]
=

∫
d4x ′

√
−g ′

[
−1

2
hµνKµν,ρσhρσ + hµνT

µν
]

(23)

VPA

〈0|0〉T = exp
{ i

2

∫
d4x ′

√
−g ′

[
Tµν(x ′)(K−1T )µν(x ′)

]}
(24)

Sungmin Hwang (LMU Munich) Vacuum Persistence in Massive Gravity November 26, 2012 19 / 27



3. Massive gravity in de Sitter background - VPA

Source term
LT = hµνT

µν (22)

Action

S =

∫
d4x ′

√
−g ′

[
LEH + Lm + Lξ + LT

]
=

∫
d4x ′

√
−g ′

[
−1

2
hµνKµν,ρσhρσ + hµνT

µν
]

(23)

VPA

〈0|0〉T = exp
{ i

2

∫
d4x ′

√
−g ′

[
Tµν(x ′)(K−1T )µν(x ′)

]}
(24)

Sungmin Hwang (LMU Munich) Vacuum Persistence in Massive Gravity November 26, 2012 19 / 27



3. Massive gravity in de Sitter background - VPA

Source term
LT = hµνT

µν (22)

Action

S =

∫
d4x ′

√
−g ′

[
LEH + Lm + Lξ + LT

]
=

∫
d4x ′

√
−g ′

[
−1

2
hµνKµν,ρσhρσ + hµνT

µν
]

(23)

VPA

〈0|0〉T = exp
{ i

2

∫
d4x ′

√
−g ′

[
Tµν(x ′)(K−1T )µν(x ′)

]}
(24)

Sungmin Hwang (LMU Munich) Vacuum Persistence in Massive Gravity November 26, 2012 19 / 27



3. Massive gravity in de Sitter background - VPA

Source term
LT = hµνT

µν (22)

Action

S =

∫
d4x ′

√
−g ′

[
LEH + Lm + Lξ + LT

]
=

∫
d4x ′

√
−g ′

[
−1

2
hµνKµν,ρσhρσ + hµνT

µν
]

(23)

VPA

〈0|0〉T = exp
{ i

2

∫
d4x ′

√
−g ′

[
Tµν(x ′)(K−1T )µν(x ′)

]}
(24)

Sungmin Hwang (LMU Munich) Vacuum Persistence in Massive Gravity November 26, 2012 19 / 27



3. Massive gravity in de Sitter background - EOM

EOM
Tαρ = (P⊥h)αρ + m2(hαρ − gαρh) (25)

4 constraints from the Bianchi identity

∇αhαρ = ∇ρh (26)

EOM after using all constraints(
−�c +µ2+

2Λ

3

)
hαρ = Tαρ+

1

3µ2 − 2Λ

[
∇ρ∇αT−µ2gαρT+

Λ

3
gαρT

]
(27)

expand both sides up to second adiabatic order!
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3. Massive gravity in de Sitter background - Vacuum
persistence

VPA in momentum space

〈0|0〉T = exp
{
−1

2

∫
|k|>>Λ1/2

d4k

(2π)4

(
Tαρ[G0 + G1 + G2]τσαρ(ΠT0)τσ

+Tαρ[G0 + G1]τσαρ(ΠT1)τσ + Tαρ(G0)τσαρ(ΠT2)τσ
)}

= exp
{
−1

2

∫
|k|>>Λ1/2

d4k

(2π)4
F (∆F ,Λ)|T (k)|2

}
(28)

Tµν is a source localized in space.
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3. Massive gravity in de Sitter background - Positivity

Positivity of F (∆F ,Λ): Given the coefficient of the leading order in
polynomial positive, one has to check the function f is bounded
below by a positive value

f (x) = (x + M)4 +
Λ

18M − 11Λ

(
22M − 62Λ

3

)
(x + M)3

− 16Λ2

9(18M − 11Λ)
x2(x + M)

+
Λ

18M − 11Λ

(104Λ

9
− 16M

)
x(x + M)2

+ . . . (29)
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3. Massive gravity in de Sitter background - Mass bound

Unitarity preserved as long as either one of two conditions are fulfilled

m2 >
(2

3
− 4ξ

)
Λ or m2 <

(11

18
− 4ξ

)
Λ (30)

for ξ ∼ 1. Second condition ruled out by the UV cutoff

A sensible constraint to preserve the unitarity

m2 >
(2

3
− 4ξ

)
Λ ∼ −Λ (31)

Cosmological constant is positive in dS, so this bound is trivial.
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3. Massive gravity in de Sitter background - Higuchi vs.
Ours

Higuchi - minimal coupling: ξ = 0
(Possibly) not an appropriate way to covariantize the theory. Need a
non-minimal coupling in general curved spacetime.

Ours - non-minimal coupling ξ 6= 0
Modifies the constraint on the deformation parameter, and implies
only trivial mass bound for the graviton.
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Discussion - Anti de Sitter spacetime

AdS - another maximally symmetric spacetime

R = 4Λ −→ R = −4Λ (32)

Mass bound

m2 >
(

4ξ − 11

18

)
Λ (33)

but trivial when the coupling is properly adjusted
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Discussion - FRW

Slowly expanding FRW (Ḣ << H2)

R(t)y2 << 1 (34)

and obtain the mass bound

m2 >
(2

3
− 4ξ

)
H2(t) (35)

Slightly running mass bound, but a constant in short time span.
Trivial mass bound again.
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Outlook

SUGRA for higher order terms

Anisotropic universe

Generation of mass for gravitons

Quantum gravity
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