
Holographic Analysis of Energy Loss Processes in
Strongly Coupled Plasmas

Ling Lin

Nov 26, 2012

Ling Lin Nov 26, 2012



Motivation

Motivation

Quark-gluon plasma is
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Condensed matter
systems may have strong
coupling.
Theoretical interest in
holographic principle.
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The Holographic Principle

The Holographic Principle

Realization: AdS/CFT correspondence (Maldacena, 1997):

N = 4 supersymmetric
SU(Nc) gauge theory in

4d Minkowski space
is dual to

type IIB string theory in
AdS5 × S5 background

Strong coupling λ, large Nc limit reduces string theory to classical
gravity in AdS5.
AdS/CFT ‘dictionary’ translates gauge theory quantities to gravity
calculations.
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The Holographic Principle

The Holographic Principle

AdS-Reissner-Nordström (AdS-RN) solution is dual to N = 4 theory
at finite T and µ.

Bottom-up approach: Propose a gravity theory and use dictionary to
define the boundary theory.
Guideline: Investigate dual theory by analysing observables.
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The Holographic Principle

Extended Models

CGN-model [Colangelo, Giannuzzi, Nicotri] with ad hoc deformation c :

GCGN
αβ dxαdxβ =

R2ec
2z2

z2

(
−h(z)dt2 + d~x2 +

dz2

h(z)

)
,

h(z), T and µ as before.

Exhibits ‘confining phase’ at low µ/T .
Does not solve any known gravitational equations of motion.
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The Holographic Principle

Extended Models

‘1-parameter model’ with metric ansatz

ds2 = e2A(z) (−h(z)dt2 + d~x2)+
e2B(z)

h(z)
dz2

solves Einstein equations derived from the action [DeWolfe, Gubser,
Rosen]

S =
1

16πGN

∫
d5x
√
−g
(
R− 1

2
(∂φ)2 − V (φ)− f (φ)

4
FµνFµν

)

deformation enters through following ansatz: φ(z) ∝ κz2

Scalar φ may or may not be dilaton.
Stability argument forbids low µ/T area. No confinement observed.
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Energy Loss Processes

Jet Quenching Parameter q̂

Hard parton in plasma gets transverse kicks: q̂ ≡ 〈p
2
⊥〉
L

Field theoretic prescription:

〈W (C)〉 = exp
(
− 1
4
√
2
q̂L−L2

)

t
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x2
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L

x−

C

q q̄ x1
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L z = 0

z = zh

Applying dictionary:

〈W (C)〉 = exp
(
−2Son-shell

reg

)
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Energy Loss Processes

Jet Quenching Parameter q̂

In general metric ansatz

ds2 = e2A(z) (−h(z)dt2 + d~x2)+
e2B(z)

h(z)
dz2

q̂ evaluates to

q̂ =
1
α′π

 zh∫
0

dz
exp(B(z)− 3A(z))√

h(z)(1− h(z))

−1

.

At µ = 0 and no deformation [Liu, Rajagopal, Wiedemann]:

q̂ =
√
λ
π3/2Γ(3/4)

Γ(5/4)
T 3 ≈

√
λ · 7.528T 3
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Energy Loss Processes

q̂ in Deformed Models

In all our models q̂ increases with growing T and µ

Examples: Behaviour of q̂ in N = 4 (left) and in 1-parameter model
at κ = 10 (right)

Agrees with intuition of how plasma affects jets.
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Energy Loss Processes

q̂ in Deformed Models

Deformation unimportant at higher µ/T .

Relative deviation from
N = 4 in CGN model
at different deforma-
tions (c = 5, 10, 20):

q̂ is a very ‘robust’ observable.
Apply calculation to other (measurable) quantities, e.g. RAA (?).
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Energy Loss Processes

Moving Quark

Linear motion [Gubser]:

Rotating Quark [Fadafan et al.]:

Q
v

boundary

horizon

z

zc

dE
dt

= − 1
2πα′

e2A(zc) v2

dE
dt

= − 1
2πα′

e2A(zc) h(zc)

Drag force shows robust behaviour.
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Conclusion

Summary

Holography allows simple calculations of complicated field theory
quantities.
Applied to QGP: Analyse jet quenching.
In models we discussed: Observables are robust.
Comparable (?) to experimental data.

Thank you for your attention!
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