24th IMPRS Workshop Munich

Dark Radiation from a hidden U(I)

Hendrik Vogel Max Planck Institute for Physics & Technical University of Munich

Outline

- I. Implications of a hidden U(I)
- 2. Dark Radiation
- 3. Summary

Hendrik Vogel, Max Planck Institute for Physics, Munich

• Lagrangian density for $U(1)_Y$

$$\mathcal{L} = -\frac{1}{4} F^{\mu\nu} F_{\mu\nu}$$

$$\sim \sim \sim \sim$$

$$\gamma$$

Hendrik Vogel, Max Planck Institute for Physics, Munich

• Lagrangian density for $U(1)_Y \times U(1)_h$

$$\mathcal{L} = -\frac{1}{4} F^{\mu\nu} F_{\mu\nu}$$

$$\sim \sim \sim \sim$$

$$\gamma$$

Hendrik Vogel, Max Planck Institute for Physics, Munich

• Lagrangian density for $U(1)_Y \times U(1)_h$

Hendrik Vogel, Max Planck Institute for Physics, Munich

• Lagrangian density for $U(1)_Y \times U(1)_h$

• Lagrangian density for $U(1)_Y \times U(1)_h$

Hendrik Vogel, Max Planck Institute for Physics, Munich

Kinetic Mixing (+ fermions)

• Dirac fermion Ψ

 $D_{\mu}\Psi = (\partial_{\mu} - ig'A'_{\mu})\Psi$

Hendrik Vogel, Max Planck Institute for Physics, Munich

Kinetic Mixing (+ fermions)

Hendrik Vogel, Max Planck Institute for Physics, Munich

Milli-Charged Particles

Hendrik Vogel, Max Planck Institute for Physics, Munich

2. Dark Radiation

Expansion of the Universe

Hubble parameter: $H \propto \sqrt{\rho} \propto g_{\star}^{1/2} T^2$

Hendrik Vogel, Max Planck Institute for Physics, Munich

Neff

Effective neutrino degrees of freedom N_{eff}

$$N_{
m eff}=3$$
 Standard Model

$$N_{\rm eff} = 3.85 \pm 0.84 \ 95\% \ \rm c.l.$$

for CMB (Keisler et al. (2011): 1108.4136)

$$\Delta N_{\text{eff}} = \frac{\rho_R}{\rho_\nu} \propto \left(\frac{T_R}{T_\nu}\right)^4 = \left(\frac{T_R}{\left(\frac{4}{11}\right)^{\frac{1}{3}}T_\gamma}\right)^4$$

Hendrik Vogel, Max Planck Institute for Physics, Munich

Neutrino Temperature

Hendrik Vogel, Max Planck Institute for Physics, Munich

Hendrik Vogel, Max Planck Institute for Physics, Munich

Hendrik Vogel, Max Planck Institute for Physics, Munich

Hendrik Vogel, Max Planck Institute for Physics, Munich

Summary

- Photons of an additional unbroken U(I) alone are unobservable
- Adding fermions leads to milli-charged particles
- Coupling these fermions to the Standard Model accelerates expansion of the universe (Dark Radiation)
- Observations favor an additional radiative component (N_{eff} >3)
- This can be explained with an additional photon and an additional fermion

Hendrik Vogel, Max Planck Institute for Physics, Munich

Hendrik Vogel, Max Planck Institute for Physics, Munich

Decoupling

$$\Gamma = <\sigma v > n_f$$

Hendrik Vogel, Max Planck Institute for Physics, Munich