

Belle II

Operation of DEPFET in gated DEPEET mode for Belle II

Theory and experimental results with PXD6 matrices and the Mini-Matrix setup

MAX-PLANCK-GESELLSCHAFT

e Pixel De

Outline

- 1) DEPFET (DEPleted p-channel Field Effect Transistor)
 - a) Signal of a single DEPFET pixel
 - b) DEPFET used as a particle detector
- 2) Theory of gated-mode
 - a) Motivation
 - b) Within the sensor what is needed?
 - c) Theory & Simulations
- 3) Measurements
 - a) Lab setup Laser impinging onto the DEPFET matrix
 - b) Operation window
 - c) Junk charge generation
 - d) Suppressed Clear
- 4) Summary

DEPFET – DEPleted p-channel Field Effect Transistor

DEPFETs as detector

- DEPFETs are arranged in a matrix
- Rows are switched on successively in order to readout the signal.

DEPFETs as detector

- DEPFETs are arranged in a matrix
- Rows are switched on successively in order to readout the signal.

DEPFETs as detector

6 rows and 8 columns are connected (circuit design)corresponding to24 rows and 2 columns (geometrically design)

Motivation for gated-mode

4ms for cooling mechanism

 \Rightarrow Loss of particles (,noisy particles')

$7_{\Delta_{f}} \Delta_{g} \ge \pm t$

Ideal situation:

Electron-hole pairs are generated when the 'noisy' bunches hit the detector \Rightarrow These electrons should not drift to the internal gate, but should be diverted to the clear contact by applying the clear potential

Consequently, no additional charge is stored in the internal gate Meanwhile, the previous stored charge (the real signal) should remain in the internal gate

Ideal situation:

 $\Delta p \cdot \Delta g \ge \pm t$

Electron-hole pairs are generated when the 'noisy' bunches hit the detector

⇒ These electrons should not drift to the internal gate, but should be diverted to the clear contact by applying the clear potential

Consequently, no additional charge is stored in the internal gate Meanwhile, the previous stored charge (the real signal) should remain in the internal gate

Real situation:

Two aspects (detector related) have to be considered:

1) To which degree can we protect charge in the internal gate from being cleared?

2) How much of the chunk charge will arrive in the internal gate?

'Real Clear' and 'Suppressed Clear' mechanism

Ap. Dg>tt

Simulations – trajectories of electrons

24th IMPRS Workshop, Felix Müller

Lab setup – Laser impinging onto the DEPFETs

Laser impinging onto the DEPFET detector

Spot size depends on:

- Focuser
- Position (used: xyz-stage)

5**B**

• Laser intensity

 $\Delta p \cdot \Delta g \ge \frac{1}{2} t$

Determining the operation window (ClearGate & ClearHigh)

24th IMPRS Workshop, Felix Müller

Generation of Junk Charge

$\int \Delta_{p} \Delta_{q} \ge + +$ Voltages for one row of the DEPFET matrix

Generation of Junk Charge – ClearGate dependence

Generation of Junk Charge – ClearGate dependence

Generation of Junk Charge – Laser intensity dependence

1ADU = 2.61 electrons

 $7 \Delta_{p} \Delta_{g \ge \frac{1}{2}} t$

Suppressed Clear

Suppressed Clear

- Gated mode works properly
- Results are in good agreement with simulations carried out by R. Richter (HLL) and measurements done by J. Scheirich (Prague) using the same setup but different analysis tools
- Another experimental setup shows similar behavior in test beams (DESY)
- ASICs for Belle II detector are modified in order to operate in the gated-mode
- Outlook: Study gated mode for long matrices (large Clear capacitance could harm)

Backup

Backup slides

- PXD6 Layout
- PXD arrangement for Belle II
- Simulations (quanitative)
- Signal of a single pixel (Gated-mode and normal operation)
- Standard Readout sequence (Rolling Shutter mode)
- Read-out signal of a single column
- Schematic lab setup
- Laser impinging onto the DEPFET (detailed picture)
- Pedestal Meaurement
- Calibration using Fe55 radioactive source
- Laser impinging onto the DEPFET detector signal
- Measurement of signal generated by a laser
- Generation of Junk Charge High voltage dependence
- Impact of the signal with respect to the drain voltage
- System Aspects

PXD6 Layout

PXD arrangement for Belle II

Two layers

Pixel size: 50x50µm² and 50x75µm² Thickness: 75µm

(for lab experiment: 50x75µm² Thickness: 75µm)

Source: Whitebook

Pixel in off state: Vgate = 5V

	Internal Gate protection during dump phase Number of electrons in the internal Gate if 10000 electrons are generated:			Signal Charge Protection 10000 electrons stored
Vclear	Beneath internal gate	Globally	Beneath clear	Number of signal electrons removed from the int. Gate
13V	4080	1300	120	3
16V	625	130	0	17
19V	450	90	0	64

Source: Rainer Richter

30 26.11.2012

24th IMPRS Workshop, Felix Müller

Standard Readout sequence (Rolling Shutter mode)

 $\Delta p \cdot \Delta q \ge \frac{1}{2} t$

Read-out signal of a single column

Laser impinging onto the DEPFET (detailed picture)

Pedestal measurements

24th IMPRS Workshop, Felix Müller

Calibration using Fe55 radioactive source

Ap. Dg > 1t

Calibration using Fe55 (without clustering)

7 Ap. Ag≥±t

Calibration using Fe55 (clustering)

Laser impinging onto the DEPFET detector – signal

Measurement of signal generated by a laser

Measurement of signal generated by a laser

Generation of Junk Charge – High voltage dependence

Impact of the signal with respect to the drain voltage

 $\Delta p \cdot \Delta q \ge \frac{1}{2} t$

System Aspects – PXD Half Ladder

From Normal Read-Out to Gated-Mode (all rows)

- GateHigh potential is applied to 191 rows → must be applied for 1 additional row
- ClearHigh is applied to 1 row → must be applied to all 192 rows

System Aspects – What are the obstacles?

45 26.11.2012

24th IMPRS Workshop, Felix Müller

Principle of Gated-Mode

