Discovery of the Higgs boson? The role of theory

Robert Harlander
Bergische Universität Wuppertal

supported by

Deutsche
Forschungsgemeinschaft
DFG

Helmholtz Alliance

The role of theory:

- Foundations
- Calculations
- Implications

Foundations

BROKEN SYMMETRIES AND THE MASSES OF GAUGE BOSONS

Peter W. Higgs

Tait Institute of Mathematical Physics, University of Edinburgh, Edinburgh, Scotland (Received 31 August 1964)

In a recent note ${ }^{1}$ it was shown that the Goldstone theorem, ${ }^{2}$ that Lorentz-covariant field theories in which spontaneous breakdown of

about the "vacuum" solution $\varphi_{1}(x)=0, \varphi_{2}(x)=\varphi_{0}$:

$$
\begin{equation*}
\partial^{\mu}\left\{\partial_{\mu}\left(\Delta \varphi_{1}\right)-e \varphi_{0} A_{\mu}\right\}=0 \tag{2a}
\end{equation*}
$$

BROKEN SYMMETRIES AND THE MASSES OF GAUGE BOSONS

Peter W. Higgs
Tait Institute of Mathematical Physics, University of Edinburgh, Edinburgh, Scotland (Received 31 August 1964)

In a recent note ${ }^{1}$ it was shown that the Goldstone theorem, ${ }^{2}$ that Lorentz-covariant field theories in which spontaneous breakdown of nomm inn indow mintornnl T io rrniln OCCurs
about the "vacuum" solution $\varphi_{1}(x)=0, \varphi_{2}(x)=\varphi_{0}$:

$$
\begin{equation*}
\partial^{\mu}\left\{\partial_{\mu}\left(\Delta \varphi_{1}\right)-e \varphi_{0} A_{\mu}\right\}=0, \tag{2a}
\end{equation*}
$$

+ Brout + Englert + Kibble +

 Hagen + Gouralnik + Anderson + ...
BROKEN SYMMETRIES AND THE MASSES OF GAUGE BOSONS

Peter W. Higgs
Tait Institute of Mathematical Physics, University of Edinburgh, Edinburgh, Scotland
(Received 31 August 1964)

In a recent note ${ }^{1}$ it was shown that the Goldstone theorem, ${ }^{2}$ that Lorentz-covariant field theories in which spontaneous breakdown of nomem inindon mintornal T io rronin OCCurs
about the "vacuum" solution $\varphi_{1}(x)=0, \varphi_{2}(x)=\varphi_{0}$:

$$
\begin{equation*}
\partial^{\mu}\left\{\partial_{\mu}\left(\Delta \varphi_{1}\right)-e \varphi_{0} A_{\mu}\right\}=0 \tag{2a}
\end{equation*}
$$

+ Brout + Englert + Kibble +

 Hagen + Gouralnil Anderson + ...presented elsewhere.
It is worth noting that an essential feature of the type of theory which has been described in this note is the prediction of incomplete multiplets of scalar and vector bosons. ${ }^{8}$ It is to be expected that this feature will appear also in
${ }^{11}$ In obtaining the expression (11) the mass difference between the charged and neutral has been ignored.
${ }^{12}$ M. Ademollo and R. Gatto, Nuovo Cimento 44A, 282 (1966); see also J. Pasupathy and R. E. Marshak, Phys. Rev. Letters 17, 888 (1966).
${ }^{13}$ The predicted ratio [eq. (12)] from the current alge-
bra is slightly larger than that (0.23%) obtained from the ρ-dominance model of Ref. 2. This seems to be true also in the other case of the ratio $\Gamma\left(\eta \rightarrow \pi^{+} \pi^{-} \gamma\right) /$ $\Gamma(\gamma \gamma)$ calculated in Refs. 12 and 14.
${ }^{14}$ L. M. Brown and P. Singer, Phys. Rev. Letters 8, 460 (1962).

A MODEL OF LEPTONS*

Steven Weinberg \dagger

Laboratory for Nuclear Science and Physics Department, Massachusetts Institute of Technology, Cambridge, Massachusetts
(Received 17 October 1967)

Leptons interact only with photons, and with the intermediate bosons that presumably mediate weak interactions. What could be more natural than to unite ${ }^{1}$ these spin-one bosons into a multiplet of gauge fields? Standing in the way of this synthesis are the obvious differanoce in the macone of tha nhnton and inter-
and on a right-handed singlet

$$
\begin{equation*}
R \equiv\left[\frac{1}{2}\left(1-\gamma_{5}\right)\right] e . \tag{2}
\end{equation*}
$$

The largest group that leaves invariant the kinematic terms $-\bar{L} \gamma^{\mu} \partial_{\mu} L-\bar{R} \gamma^{\mu} \partial_{\mu} R$ of the Lagrang-
 field φ_{1} has mass M_{1} while φ_{2} and φ^{-}have mass zero. But we can easily see that the Goldstone bosons represented by φ_{2} and φ^{-}have no physical coupling. The Lagrangian is gauge invariant, so we can perform a combined isospin and hypercharge gauge transformation which eliminates φ^{-}and φ_{2} everywhere ${ }^{6}$ without changing anything else. We will see that G_{e} is very small, and in any case M_{1} might be very large, ${ }^{7}$ so the φ_{1} couplings will also be disregarded in the following.

The effect of all this is just to replace φ everywhere by its vacuum expectation value

$$
\begin{equation*}
\langle\varphi\rangle=\lambda\binom{1}{0} \tag{6}
\end{equation*}
$$

The first four terms in \mathcal{L} remain intact, while the rest of the Lagrangian becomes

$$
\begin{align*}
-\frac{1}{8} \lambda^{2} g^{2}\left[\left(A_{\mu}^{1}\right)^{2}+\right. & \left.\left(A_{\mu}^{2}\right)^{2}\right] \\
& -\frac{1}{8} \lambda^{2}\left(g A_{u}^{3}+g^{\prime} B_{u}\right)^{2}-\lambda G_{e} \bar{e} e \tag{7}
\end{align*}
$$

[^0]and has mass
\[

$$
\begin{equation*}
M_{W}=\frac{1}{2} \lambda g \tag{9}
\end{equation*}
$$

\]

The neutral spin-1 fields of definite mass are

$$
\begin{align*}
& Z_{\mu}=\left(g^{2}+g^{\prime 2}\right)^{-1 / 2}\left(g A_{\mu}^{3}+g^{\prime} B_{\mu}\right) \tag{10}\\
& A_{\mu}=\left(g^{2}+g^{\prime 2}\right)^{-1 / 2}\left(-g^{\prime} A_{\mu}^{3}+g B_{\mu}\right) \tag{11}
\end{align*}
$$

Their masses are

$$
\begin{gather*}
M_{Z}=\frac{1}{2} \lambda\left(g^{2}+g^{\prime 2}\right)^{1 / 2} \tag{12}\\
M_{A}=0 \tag{13}
\end{gather*}
$$

so A_{μ} is to be identified as the photon field. The interaction between leptons and spin-1

field φ_{1} has mass M_{1} while φ_{2} and φ^{-}have mass zero. But we can easily see that the Goldstone bosons represented by φ_{2} and φ^{-}have no physical coupling. The Lagrangian is gauge invariant, so we can perform a combined isospin and hypercharge gauge transformation which eliminates φ^{-}and φ_{2} everywhere ${ }^{6}$ without changing anything else. We will see that G_{e} is very small, and in any case M_{1} might be very large, ${ }^{7}$ so the φ_{1} couplings will also be disregarded in the following.

The effect of all this is just to replace φ everywhere by its vacuum expectation value

$$
\begin{equation*}
\langle\varphi\rangle=\lambda\binom{1}{0} . \tag{6}
\end{equation*}
$$

The first four terms in \mathcal{L} remain intact, while the rest of the Lagrangian becomes
and has mass

$$
\begin{equation*}
M_{W}=\frac{1}{2} \lambda g \tag{9}
\end{equation*}
$$

The neutral spin-1 fields of definite mass are

$$
\begin{align*}
& Z_{\mu}=\left(g^{2}+g^{\prime 2}\right)^{-1 / 2}\left(g A_{\mu}^{3}+g^{\prime} B_{\mu}\right) \tag{10}\\
& A_{\mu}=\left(g^{2}+g^{\prime 2}\right)^{-1 / 2}\left(-g^{\prime} A_{\mu}^{3}+g B_{\mu}\right) \tag{11}
\end{align*}
$$

Their masses are

$$
\begin{gather*}
M_{Z}=\frac{1}{2} \lambda\left(g^{2}+g^{\prime 2}\right)^{1 / 2} \tag{12}\\
M_{A}=0 \tag{13}
\end{gather*}
$$

$\left.-\frac{1}{8} \lambda^{2} g^{2} \right\rvert\,$ er than $\frac{5}{2}$. Of course our model has too many arbitrary features for these predictions to be
ied as the photon field. en leptons and spin-1

Citations to Weinberg's "Model of Leptons":

thanks to H. Kragh

Citations to Weinberg's "Model of Leptons":

thanks to H. Kragh

RENORMALIZABLE LAGRANGIANS FOR MASSIVE YANG-MILLS FIELDS

G.'t HOOFT
Institute for Theoretical Physics, University of Utrecht

Received 13 July 1971

Abstract: Renormalizable models are constructed in which local gauge invariance is broken spontaneously. Feynman rules and Ward identities can be found by means of a path integral method, and they can be checked by algebra. In one of these models, which is studied in more detail, local $\operatorname{SU}(2)$ is broken in such a way that local $U(1)$ remains as a symmetry. A renormalizable and unitary theory results, with photons, charged massive vector particles, and additional neutral scalar particles. It has three independent parameters.

Another model has local $\mathrm{SU}(2) \otimes \mathrm{U}(1)$ as a symmetry and may serve as a renormalizable theory for ρ-mesons and photons.

In such models electromagnetic mass-differences are finite and can be calculated in perturbation theory.

RENORMALIZABLE LAGRANGIANS FOR MASSIVE YANG-MILLS FIELDS

G.'t HOOFT
Institute for Theoretical Physics, University of Utrecht

\dagger The model of this section is due to Weinberg [13], who showed that it can describe weak interactions between leptons. His lepton model can be shown to be renormalizable.
studied in more detail, local $\mathrm{SU}(2)$ is broken in such a way that local $\mathrm{U}(1)$ remains as a symmetry. A renormalizable and unitary theory results, with photons, charged massive vector particles, and additional neutral scalar particles. It has three independent parameters.

Another model has local $\mathrm{SU}(2) \otimes \mathrm{U}(1)$ as a symmetry and may serve as a renormalizable theory for ρ-mesons and photons.

In such models electromagnetic mass-differences are finite and can be calculated in perturbation theory.

Calculations

Spontaneous Symmetry Breakdown without Massless Bosons*

Peter W. Higgs \dagger
Department of Physics, University of North Carolina, Chapel Hill, North Carolina

(Received 27 December 1965)
We examine a simple relativistic theory of two scalar fields, first discussed by Goldstone, in which as a result of spontaneous breakdown of $U(1)$ symmetry one of the scalar bosons is massless, in conformity with the Goldstone theorem. When the symmetry group of the Lagrangian is extended from global to local $U(1)$ transformations by the introduction of coupling with a vector gauge field, the Goldstone boson becomes the longitudinal state of a massive vector boson whose transverse states are the quanta of the transverse gauge field. A perturbative treatment of the model is developed in which the major features of these phenomena are present in zero order. Transition amplitudes for decay and scattering processes are evaluated in lowest order, and it is shown that they may be obtained more directly from an equivalent Lagrangian in which the original symmetry is no longer manifest. When the system is coupled to other systems in a $U(1)$ invariant Lagrangian, the other systems display an induced symmetry breakdown, associated with a partially conserved current which interacts with itself via the massive vector boson.

Spontaneous Symmetry Breakdown without Massless Bosons*

Peter W. Higgs \dagger
Department of Physics, University of North Carolina, Chapel Hill, North Carolina

(Received 27 December 1965)
We examine a simple relativistic theory of two scalar fields, first discussed by Goldstone, in which as a result of spontaneous breakdown of U (1) symmetry one of the scalar bosons is massless, in conformity with the Goldstone theorem. When the symmetry group of the Lagrangian is extended from global to local $U(1)$ transformations by the introduction of coupling with a vector gauge field, the Goldstone boson becomes the
 field. A perturba present in zero c and it is shown symmetry is nc grangian, the ot current which is

i. Decay of a Scalar Boson into Two
 Vector Bosons

The process occurs in first order (four of the five cubic vertices contribute), provided that $m_{0}>2 m_{1}$. Let p be the incoming and k_{1}, k_{2} the outgoing momenta. Then

$$
\begin{gathered}
M=i\left\{e\left[a^{* \mu}\left(k_{1}\right)\left(-i k_{2 \mu}\right) \phi^{*}\left(k_{2}\right)+a^{* \mu}\left(k_{2}\right)\left(-i k_{1 \mu}\right) \phi^{*}\left(k_{1}\right)\right]\right. \\
-e\left(i p_{\mu}\right)\left[a^{* \mu}\left(k_{1}\right) \phi^{*}\left(k_{2}\right)+a^{* \mu}\left(k_{2}\right) \phi^{*}\left(k_{1}\right)\right] \\
\left.-2 e m_{1} a_{\mu}^{*}\left(k_{1}\right) a^{* \mu}\left(k_{2}\right)-f m_{0} \phi^{*}\left(k_{1}\right) \phi^{*}\left(k_{2}\right)\right\} .
\end{gathered}
$$

Bv 11 sing Eq. (15), conservation of momontırm. and

A PHENOMENOLOGICAL PROFILE OF THE HIGGS BOSON

John ELLIS, Mary K. GAILLARD * and D.V. NANOPOULOS ** CERN, Geneva

Received 7 November 1975

A discussion is given of the production, decay and observability of the scalar Higgs boson H expected in gauge theories of the weak and electromagnetic interactions such as the Weinberg-Salam model. After reviewing previous experimental limits on the mass of the Higgs boson, we give a speculative cosmological argument for a small mass. If its mass is similar to that of the pion, the Higgs boson may be visible in the reactions $\pi^{-} \mathrm{p} \rightarrow \mathrm{Hn}$ or $\gamma \mathrm{p} \rightarrow \mathrm{Hp}$ near threshold. If its mass is $\lesssim 300 \mathrm{MeV}$, the Higgs boson may be present in the decays of kaons with a branching ratio $\mathrm{O}\left(10^{-7}\right)$, or in the decays of one of the new particles: $3.7 \rightarrow 3.1+\mathrm{H}$ with a branching ratio $\mathrm{O}\left(10^{-4}\right)$. If its mass is $\leqslant 4 \mathrm{GeV}$, the Higgs boson may be visible in the reaction $\mathrm{pp} \rightarrow \mathrm{H}+\mathrm{X}, \mathrm{H} \rightarrow \mu^{+} \mu^{-}$. If the Higgs boson has a mass $\leqslant 2 m_{\mu}$, the decays $\mathrm{H} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$and $\mathrm{H} \rightarrow \gamma \gamma$ dominate, and the lifetime is $\mathrm{O}\left(6 \times 10^{-4}\right.$ to 2×10^{-12}) seconds. As thresholds for heavier particles (pions, strange particles, new particles) are crossed, decays into them become dominant, and the lifetime decreases rapidly to $\mathrm{O}\left(10^{-20}\right)$ sec for a Higgs boson of mass 10 GeV . Decay branching ratios in principle enable the quark masses to be determined.

A PHENOMENOLOGICAL PROFILE OF THE HIGGS BOSON

John ELLIS, Mary K. GAILLARD * and D.V. NANOPOULOS ** CERN, Geneva

Received 7 November 1975

Abstract

A discussion is given of the production, decay and observability of the scalar Higgs boson H expected in gauge theories of the weak and electromagnetic interactions such as the Weinberg-Salam model. After reviewing previous experimental limits on the mass of the Higgs boson, we give a speculative cosmological argument for a small mass. If its mass is similar to that of the pion, the Higgs boson may be visible in the reactions $\pi^{-} \mathrm{p} \rightarrow \mathrm{Hn}$ or $\gamma \mathrm{p} \rightarrow \mathrm{Hp}$ near threshold. If its mass is $\lesssim 300 \mathrm{MeV}$, the Higgs boson may be present in the decays of kaons with a branching ratio $\mathrm{O}\left(10^{-7}\right)$, or in the decavs of one of the new nar-

We should perhaps finish with an apology and a caution. We apologize to experimentalists for having no idea what is the mass of the Higgs boson, unlike the case with charm $[3,4]$ and for not being sure of its couplings to other particles, except that they are probably all very small. For these reasons we do not want to encourage big experimental searches for the Higgs boson, but we do feel that people performing experiments vulnerable to the Higgs boson should know how it may turn up.

LIMIT ON MASS DIFFERENCES IN THE WEINBERG MODEL

M. VELTMAN

Institute for Theoretical Physics, University of Utrecht, Netherlands

Received 7 February 1977

Within the Weinberg model mass differences between members of a multiplet generate further mass differences between the neutral and charged vector bosons. The experimental situation on the Weinberg model leads to an upper limit of about 800 GeV on mass differences within a multiplet. No limit on the average mass can be deduced.

LIMIT ON MASS DIFFERENCES IN THE WEINBERG MODEL

M. VELTMAN

Institute for Theoretical Physics, University of Utrecht, Netherlands

Received 7 February 1977

Within the Weinberg model mass differences between members of a multiplet generate further mass differences between the neutral and charged vector bosons. The experimental situation on the Weinberg model leads to an upper limit of about 800 GeV on mass differences within a multiplet. No limit on the average mass can be deduced.

$$
\left.\left.\mathrm{P}=1+\frac{G}{4 \pi^{2}}\left\{m_{1}^{2}+m_{2}^{2}-\frac{2 m_{1}^{2} m_{2}^{2}}{m_{2}^{2}-m_{1}^{2}} \ln \frac{m_{2}^{2}}{m_{1}^{2}}\right\},\right\}=1+\frac{G}{12 \pi^{2}} \frac{\left(m_{1}^{2}-m_{2}^{2}\right.}{m_{2}^{2}}\right)^{2}+\cdots
$$

[15] R. Assmann et al., Eur. Phys. J. C6 (1999) 187-223.
[16] A. A. Sokolov and I. M. Ternov, Phys. Dokl. 8 (1964) 1203-1205.
[17] T. Sjostrand, Comput. Phys. Commun. 82 (1994) 74-90, (JETSET).
[18] G. Marchesini et al., Comput. Phys. Commun. 67 (1992) 465-508, (HERWIG).
[19] L. Lonnblad, Comput. Phys. Commun. 71 (1992) 15-31, (ARIADNE).
[20] S. Jadach, B.F.L. Ward and Z. Wa̧s, Comput. Phys. Commun. 79 (1994) 503, (KORALZ 4.0).
[21] S. Jadach, B.F.L. Ward and Z. Wa̧s, Comput. Phys. Commun. 130 (2000) 260, (KK Monte Carlo).
[22] F.A. Berends, R. Kleiss and W. Hollik, Nucl. Phys. B304 (1988) 712, (BABAMC).
[23] S. Jadach, W. Placzek, E. Richter-Wạs, B.F.L. Ward and Z. Wa̧s, Comput. Phys. Commun. 102 (1997) 229, (BHLUMI 4.04).
[24] R. Brun et al., GEANT3, Preprint CERN DD/EE/84-1, CERN, 1987, details of its implementation may be found in the individual detector references, [7-10].
[25] D. A. Ross and M. J. G. Veltman, Nucl. Phys. B95 (1975) 135; M. J. G. Veltman, Nucl. Phys. B123 (1977) 89.
[26] D. A. Ross and J. C. Taylor, Nucl. Phys. B51 (1973) 125-144; A. Sirlin, Phys. Rev. D22 (1980) 971-981.
[27] G. Burgers and F. Jegerlehner, in Z Physics At Lep 1. Proceedings, Workshop, Geneva, Switzerland, September 4-5, 1989. Vol. 1: Standard Physics, CERN 89-08, ed. G. Altarelli, R. Kleiss, and C. Verzegnassi, (CERN, Geneva, Switzerland, 1989), p. 55.
[15] R. Assmar
16] A. A. Sokc
[17] T. Sjostraı
[18] G. Marche
[19] L. Lonnblé
[20] S. Jadach, 4.0).
[21] S. Jadach, Monte Car
[22] F.A. Berer
[23] S. Jadach, mun. 102
[24] R. Brun e implement
[25] D. A. Ross M. J. G. V
[26] D. A. Ross
A. Sirlin,
[27] G. Burger: Switzerlan R. Kleiss,
[28] F. Jegerlehner, in Testing the Standard Model - TASI-90, proceedings: Theoretical Advanced Study Institute in Elementary Particle Physics, Boulder, Colo., Jun 3-27, 1990, ed. M. Cvetic and P. Langacker, (World Scientific, Singapore, 1991), p. 916.
[29] T. Kawamoto and R. G. Kellogg, Phys. Rev. D69 (2004) 113008.
[30] G. Montagna et al., Nucl. Phys. B401 (1993) 3-66;
G. Montagna et al., Comput. Phys. Commun. 76 (1993) 328-360;
G. Montagna et al., Comput. Phys. Commun. 93 (1996) 120-126;
G. Montagna et al., Comput. Phys. Commun. 117 (1999) 278-289, updated to include initial state pair radiation (G. Passarino, priv. comm.).
[31] D. Y. Bardin et al., Z. Phys. C44 (1989) 493;
D. Y. Bardin et al., Comput. Phys. Commun. 59 (1990) 303-312;
D. Y. Bardin et al., Nucl. Phys. B351 (1991) 1-48;
D. Y. Bardin et al., Phys. Lett. B255 (1991) 290-296;
D. Y. Bardin et al., ZFITTER: An Analytical program for fermion pair production in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation, Eprint arXiv:hep-ph/9412201, 1992;
D. Y. Bardin et al., Comput. Phys. Commun. 133 (2001) 229-395, updated with results from [57];
Two Fermion Working Group, M. Kobel, et al., Two-fermion production in electron positron collisions, Eprint hep-ph/0007180, 2000;
A. B. Arbuzov et al., ZFITTER: a semi-analytical program for fermion pair production in e+e-annihilation, from version 6.21 to version 6.42, Eprint hep-ph/0507146, 2005.
[32] D. Bardin and G. Passarino, The standard model in the making: Precision study of the electroweak interactions, (Clarendon, Oxford, UK, 1999).
[33] F. Berends et al., in Z Physics At Lep 1. Proceedings, Workshop, Geneva, Switzerland, September 4-5, 1989. Vol. 1: Standard Physics, CERN 89-08, ed. G. Altarelli, R. Kleiss, and C. Verzegnassi, (CERN, Geneva, Switzerland, 1989), p. 89.
[34] P. A. Grassi, B. A. Kniehl, and A. Sirlin, Phys. Rev. Lett. 86 (2001) 389-392;
A. Sirlin, Phys. Lett. B267 (1991) 240-242;
A. Sirlin, Phys. Rev. Lett. 67 (1991) 2127-2130.
[35] K. Chetyrkin et al., in Reports of the working group on precision calculations for the Z resonance, CERN 95-03, ed. D. Bardin, W. Hollik, and G. Passarino, (CERN, Geneva, Switzerland, 1995), p. 175.
[36] A. Czarnecki and J. H. Kuhn, Phys. Rev. Lett. 77 (1996) 3955-3958;
R. Harlander, T. Seidensticker, and M. Steinhauser, Phys. Lett. B426 (1998) 125-132.
[37] A. Blondel et al., Nucl. Phys. B304 (1988) 438.
[38] M. Böhm and W. Hollik, in Z Physics At Lep 1. Proceedings, Workshop, Geneva, Switzerland, September 4-5, 1989. Vol. 1: Standard Physics, CERN 89-08, ed. G. Altarelli, R. Kleiss, and C. Verzegnassi, (CERN, Geneva, Switzerland, 1989), pp. 203-234.
[15] R. Assmar
[16] A. A. Sokc
[17] T. Sjostraı
[18] G. Marche
[19] L. Lonnblé
[20] S. Jadach, 4.0).
[21] S. Jadach, Monte Car
[22] F.A. Berer
[23] S. Jadach, mun. 102
[24] R. Brun e implement
[25] D. A. Ross M. J. G. V
[26] D. A. Ross
A. Sirlin,
[27] G. Burger: Switzerlan R. Kleiss,
[28] F. Jegerlehner, in Testing the Standard Model - TASI-90, proceedings: Theoretical Advanced Study Institute in Elementary Particle Physics, Boulder, Colo., Jun 3-27, 1990, ed. M. Cvetic and P. Langacker, (World Scientific, Singapore, 1991), p. 916.
[29] T. Kawamoto and R. G. Kellogg, Phys. Rev. D69 (2004) 113008.
[30] G. Montagna et al., Nucl. Phys. B401 (1993) 3-66;
G. Montagna et al., Comput. Phys. Commun. 76 (1993) 328-360;
G. Montagna et al., Comput. Phys. Commun. 93 (1996) 120-126;
G. Montagna et al., Comput. Phys. Commun. 117 (1999) 278-289, updated to include initial sta
[31] D. Y. Baı [46] J. H. Field and T. Riemann, Comput. Phys. Commun. 94 (1996) 53-87, (BHAGENE3).
D. Y. Baı [47] S. Jadach, W. Placzek, and B. F. L. Ward, Phys. Lett. B390 (1997) 298-308.
D. Y. Baı
D. Y. Baı
[48] H. Anlauf et al., Comput. Phys. Commun. 79 (1994) 466-486, (UNIBAB).
D. Y. Baa
D. Y. Ba $\mathrm{e}^{+} \mathrm{e}^{-}$ann D. Y. Baı from [57]; Two Ferr positron (A. B. Arl in $e+e-a$
[32] D. Bardir electrowe:
[33] F. Berenc Septembe and C. Vt
[34] P. A. Gra A. Sirlin, A. Sirlin,
[49] J. Hilgart, R. Kleiss and F. Le Diberder, Comput. Phys. Commun. 75 (1993) 191, (FERMISV).
[50] J. Fujimoto et al., Comput. Phys. Commun. 100 (1997) 128-156, (GRC4f).
[51] For the ALEPH Collaboration, D. Bederede et al., Nucl. Instrum. Meth. A365 (1995) 117-134;
For the L3 Collaboration, I. C. Brock et al., Nucl. Instrum. Meth. A381 (1996) 236-266; OPAL Collaboration, G. Abbiendi et al., Eur. Phys. J. C14 (2000) 373-425.
[52] W. Beenakker, F.A. Berends and S.C. van der Marck, Nucl. Phys. B349 (1991) 323-368, (ALIBABA).
[53] LEP Polarization Collaboration, L. Arnaudon et al., Phys. Lett. B284 (1992) 431-439.
[54] L. Arnaudon et al., Z. Phys. C66 (1995) 45-62.
[55] L. Knudsen et al., Phys. Lett. B270 (1991) 97-104.
[56] M. Placidi and R. Rossmanith, Nucl. Instr. Meth. A274 (1989) 79.
[35] K. Chetyrkin et al., in Reports of the working group on precision calculations for the Z resonance, CERN 95-03, ed. D. Bardin, W. Hollik, and G. Passarino, (CERN, Geneva, Switzerland, 1995), p. 175.
[36] A. Czarnecki and J. H. Kuhn, Phys. Rev. Lett. 77 (1996) 3955-3958;
R. Harlander, T. Seidensticker, and M. Steinhauser, Phys. Lett. B426 (1998) 125-132.
[37] A. Blondel et al., Nucl. Phys. B304 (1988) 438.
[38] M. Böhm and W. Hollik, in Z Physics At Lep 1. Proceedings, Workshop, Geneva, Switzerland, September 4-5, 1989. Vol. 1: Standard Physics, CERN 89-08, ed. G. Altarelli, R. Kleiss, and C. Verzegnassi, (CERN, Geneva, Switzerland, 1989), pp. 203-234.
[15] R. Assmar
[16] A. A. Sokc
[17] T. Sjostra]
[18] G. Marche
[19] L. Lonnblé
[20] S. Jadach, 4.0).
[21] S. Jadach, Monte Cas
[22] F.A. Berer
[23] S. Jadach, mun. 102
[24] R. Brun e implement
[25] D. A. Ross M. J. G. V
[26] D. A. Ross A. Sirlin,
[27] G. Burger Switzerlan R. Kleiss,
[28] F. Jegerlehner, in Testing the , vanced Study Institute in Elen ed. M. Cvetic and P. Langacke
[29] T. Kawamoto and R. G. Kello\&
[30] G. Montagna et al., Nucl. Phys G. Montagna et al., Comput. I G. Montagna et al., Comput. I G. Montagna et al., Comput. initial sta
[31] D. Y. Bas [46] J. H. Field aı
D. Y. Bas D. Y. Baı D. Y. Baı D. Y. Ba $\mathrm{e}^{+} \mathrm{e}^{-}$ann D. Y. Bal from [57]; Two Ferr positron (A. B. Arl in $e+e-a$
[32] D. Bardir electrowe:
[33] F. Berenc Septembe and C. Vt
[34] P. A. Gra A. Sirlin, A. Sirlin,
[47] S. Jadach, W
[48] H. Anlauf et
[49] J. Hilgart, F (FERMISV).
[50] J. Fujimoto t
[51] For the ALE 117-134; For the L3 C OPAL Collat
[52] W. Beenakke (ALIBABA).
[53] LEP Polarize
[54] L. Arnaudon
[55] L. Knudsen є
[56] M. Placidi ar
35] K. Chetyrkin et al., in Reports resonance, CERN 95-03, ed. D Switzerland, 1995), p. 175.
[36] A. Czarnecki and J. H. Kuhn, R. Harlander, T. Seidensticker,
[37] A. Blondel et al., Nucl. Phys.]
[38] M. Böhm and W. Hollik, in Z F land, September 4-5, 1989. Vo Kleiss, and C. Verzegnassi, (CF
[238] Ed. G. Altarelli, R. Kleiss, and C. Verzegnassi, Z Physics At Lep 1. Proceedings, Workshop, Geneva, Switzerland, September 4-5, 1989. Vol. 1: Standard Physics, (CERN, Geneva, Switzerland, 1989), Yellow Report CERN 89-08.
[239] D. Bardin et al., in Reports of the working group on precision calculations for the Z resonance, CERN 95-03, ed. D. Bardin, W. Hollik, and G. Passarino, (CERN, Geneva, Switzerland, 1995), pp. 7-162.
[240] D. Y. Bardin and G. Passarino, Upgrading of precision calculations for electroweak observables, Eprint hep-ph/9803425, 1998.
[241] U. Baur et al., eConf C010630 (2001) P122, hep-ph/0111314.
[242] The Snowmass Working Group on Precision Electroweak Measurements, eConf C010630 (2001) P1WG1, hep-ph/0202001.
[243] M. Awramik et al., Phys. Rev. D69 (2004) 053006.
[244] M. Faisst et al., Nucl. Phys. B665 (2003) 649-662.
[245] M. Awramik et al., Phys. Rev. Lett. 93 (2004) 201805.
[246] K. G. Chetyrkin, J. H. Kuhn, and A. Kwiatkowski, Phys. Rept. 277 (1996) 189-281.
[247] D. E. Soper and L. R. Surguladze, Phys. Rev. D54 (1996) 4566-4577.
[248] S. Bethke, J. Phys. G26 (2000) R27.
[249] S. Bethke, Nucl. Phys. Proc. Suppl. 135 (2004) 345-352.
[250] H. Stenzel, JHEP 07 (2005) 0132.
[251] F. James and M. Roos, Comp. Phys. Commun. 10 (1975) 343.
[252] G. Altarelli and R. Barbieri, Phys. Lett. B253 (1991) 161-167;
G. Altarelli, R. Barbieri, and S. Jadach, Nucl. Phys. B369 (1992) 3-32;
G. Altarelli, R. Barbieri, and S. Jadach, Nucl. Phys. B376 (1992) 444;
G. Altarelli, R. Barbieri, and F. Caravaglios, Nucl. Phys. B405 (1993) 3-23;
G. Altarelli, R. Barbieri, and F. Caravaglios, Phys. Lett. B314 (1993) 357-363;
G. Altarelli, R. Barbieri, and F. Caravaglios, Phys. Lett. B349 (1995) 145-154;
G. Altarelli, R. Barbieri, and F. Caravaglios, Int. J. Mod. Phys. A13 (1998) 1031.
[253] M. E. Peskin and T. Takeuchi, Phys. Rev. Lett. 65 (1990) 964-967;
M. E. Peskin and T. Takeuchi, Phys. Rev. D46 (1992) 381-409.

$\square \square D$

GFitter 'I2

Tevatron exclusion

Tevatron exclusion

Tevatron Run II Preliminary, $\left\langle\mathrm{L}>=5.9 \mathrm{fb}^{-1}\right.$

Tevatron Run II Preliminary, $<\mathrm{L}>=5.9 \mathrm{fb}^{-1}$

Tevatron today

Tevatron Run II Preliminary, $\mathrm{L} \leq 10.0 \mathrm{fb}^{-1}$

LHC Higgs Cross Section Working Group

\downarrow LHC Higgs Cross Section Working Group
\downarrow O News
\downarrow Overview
\downarrow CERN Reports: Handbook of LHC Higgs Cross Sections
\downarrow Preprints
\downarrow () Higgs cross sections at 7,8 and 14 TeV

+ Q Latest plots
\downarrow O Information
+ Workshops
\downarrow Communication Tools
\downarrow O Organization

M. [GeV/]

M. [GeV]

Gluon fusion

NLO: Spira, Djouadi, Graudenz, Zerwas '9I, '93
Dawson '91
NNLO: RH, Kilgore '02
Anastasiou, Melnikov '02
Ravindran, Smith, v. Neerven '03
Resummation:
Catani, de Florian, Grazzini, Nason '02 Ahrens, Becher, Neubert, Zhang '08
Electroweak:
Actis, Passarino, Sturm, Uccirati '08
Aglietti, Bonciani, Degrassi, Vicini '04
Degrassi, Maltoni '04
Djouadi, Gambino '94
Mixed EW/QCD:
Anastasiou, Boughezal, Petriello '09
Fully differential NNLO:
Anastasiou, Melnikov, Petriello '04
Catani, Grazzini '07

Gluon fusion

NLO: Spira, Djouadi, Graudenz, Zerwas '9I, '93
Dawson '9|
~80\%
NNLO: RH, Kilgore '02
Anastasiou, Melnikov '02
Ravindran, Smith, v. Neerven '03
Resummation:
Catani, de Florian, Grazzini, Nason '02 Ahrens, Becher, Neubert, Zhang '08

Electroweak:
Actis, Passarino, Sturm, Uccirati '08
Aglietti, Bonciani, Degrassi, Vicini '04
Degrassi, Maltoni '04
Djouadi, Gambino '94
Mixed EW/QCD:
Anastasiou, Boughezal, Petriello '09
Fully differential NNLO:
Anastasiou, Melnikov, Petriello '04
Catani, Grazzini '07

Gluon fusion

NLO: Spira, Djouadi, Graudenz, Zerwas '9I, '93
Dawson '9|
~80\%
NNLO: RH, Kilgore '02
Anastasiou, Melnikov '02 ~30\%
Ravindran, Smith, v. Neerven '03
Resummation:
Catani, de Florian, Grazzini, Nason '02 Ahrens, Becher, Neubert, Zhang '08

Electroweak:
Actis, Passarino, Sturm, Uccirati '08
Aglietti, Bonciani, Degrassi, Vicini '04
Degrassi, Maltoni '04
Djouadi, Gambino '94
Mixed EW/QCD:
Anastasiou, Boughezal, Petriello '09
Fully differential NNLO:
Anastasiou, Melnikov, Petriello '04
Catani, Grazzini '07

Gluon fusion

NLO: Spira, Djouadi, Graudenz, Zerwas '9I, '93
Dawson '9|
~80\%
NNLO: RH, Kilgore '02
Anastasiou, Melnikov '02 ~30\%
Ravindran, Smith, v. Neerven '03
Resummation:
Catani, de Florian, Grazzini, Nason '02
Ahrens, Becher, Neubert, Zhang '08
Electroweak:
Actis, Passarino, Sturm, Uccirati '08
Aglietti, Bonciani, Degrassi, Vicini '04
Degrassi, Maltoni '04
Djouadi, Gambino '94
Mixed EW/QCD:
Anastasiou, Boughezal, Petriello '09
Fully differential NNLO:
Anastasiou, Melnikov, Petriello '04
Catani, Grazzini '07

Gluon fusion

NLO: Spira, Djouadi, Graudenz, Zerwas '9I, '93
Dawson '9|
~80\%
NNLO: RH, Kilgore '02
Anastasiou, Melnikov '02 ~30\%
Ravindran, Smith, v. Neerven '03
Resummation:
Catani, de Florian, Grazzini, Nason '02
Ahrens, Becher, Neubert, Zhang '08
Electroweak:
Actis, Passarino, Sturm, Uccirati '08
Aglietti, Bonciani, Degrassi, Vicini '04
Degrassi, Maltoni '04
Djouadi, Gambino '94
Mixed EW/QCD:
Anastasiou, Boughezal, Petriello '09
Fully differential NNLO:
Anastasiou, Melnikov, Petriello '04
Catani, Grazzini '07

Gluon fusion

$$
\sigma_{\infty}^{\mathrm{HO}} \equiv \sigma^{\mathrm{LO}}\left(m_{t}\right)\left(\frac{\sigma^{\mathrm{HO}}}{\sigma^{\mathrm{LO}}}\right)_{m_{t} \rightarrow \infty}
$$

NLO: Spira, Djouadi, Graudenz, Zerwas '9I, '93
Dawson '91
~80\%

NNLO: RH, Kilgore '02
Anastasiou, Melnikov '02 ~30\%
Ravindran, Smith, v. Neerven '03
Resummation:
Catani, de Florian, Grazzini, Nason '02
Ahrens, Becher, Neubert, Zhang '08
Electroweak:
Actis, Passarino, Sturm, Uccirati '08
Aglietti, Bonciani, Degrassi, Vicini '04
Degrassi, Maltoni '04
Djouadi, Gambino '94
Mixed EW/QCD:
Anastasiou, Boughezal, Petriello '09
Fully differential NNLO:
Anastasiou, Melnikov, Petriello '04
Catani, Grazzini '07

Effective Theory:

Effective Theory:

$m_{t} \gg M_{H}$
$C\left(m_{t}, \alpha_{s}\right) \times$

$$
\sigma_{\infty}^{\mathrm{HO}} \equiv \sigma^{\mathrm{LO}}\left(m_{t}\right)\left(\frac{\sigma^{\mathrm{HO}}}{\sigma^{\mathrm{LO}}}\right)_{m_{t} \rightarrow \infty}
$$

$$
\mathrm{M}_{\mathrm{H}}[\mathrm{GeV}]
$$

Effective Theory:

$$
\sigma_{\infty}^{\mathrm{HO}} \equiv \sigma^{\mathrm{LO}}\left(m_{t}\right)\left(\frac{\sigma^{\mathrm{HO}}}{\sigma^{\mathrm{LO}}}\right)_{m_{t} \rightarrow \infty}
$$

what about higher orders?

Gluon fusion: recent progress

- Higgs line shape

Goria, Passarino, Rosco 'I2; Anastasiou, Buehler, Herzog, Lazopoulos 'II

- Signal/Background interference

Glover, v.d. Bij '89; Binoth, Ciccolini, Kauer, Krämer '06;
Campbell, Ellis, Williams 'II; Kauer 'I2; Passarino 'I2;
S.P. Martin 'I3; Bonfini, Caola, Forte, Melnikov, Ridolfi 'I3

- validity of effective I / mt theory

RH, Mantler, Marzani, Ozeren '09; Pak, Rogal, Steinhauser '09
Alwall, Li, Maltoni ' I I; Bagnaschi, Degrassi, Slavich,Vicini 'I I
RH, Neumann, Wiesemann 'I2

- jet veto uncertainties

Anastasiou, Dissertori, Grazzini, Stöckli,Webber '09
Stewart, Tackmann 'II
Banfi, Monni, Salam, Zanderighi 'I2; Becher, Neubert 'I2
Tackmann,Walsh, Zuberi 'I2

Towards NNNLO

Towards NNNLO

Baikov, Chetyrkin, Smirnov, Smirnov, Steinhauser '09
Lee, Smirnov, Smirnov 'I0
Gehrmann, Glover, Huber, Ikizlerli, Studerus '09

Towards NNNLO

Baikov, Chetyrkin, Smirnov, Smirnov, Steinhauser '09
Lee, Smirnov, Smirnov 'I0
Gehrmann, Glover, Huber, Ikizlerli, Studerus '09
(ع) $\begin{aligned} & \text { Anastasiou, Bühler, Duhr, Herzog 'I2 } \\ & \text { Hoschele, Hoff, Pak, Steinhauser, Ueda 'I2 }\end{aligned}$

Towards NNNLO

Baikov, Chetyrkin, Smirnov, Smirnov, Steinhauser '09
Lee, Smirnov, Smirnov 'I0
Gehrmann, Glover, Huber, Ikizlerli, Studerus '09

O(ع) Anastasiou, Bühler, Duhr, Herzog 'I2
(ع) Hoschele, Hoff, Pak, Steinhauser, Ueda 'I2

Anastasiou, Duhr, Dulat, Mistlberger 'I3

Towards NNNLO

Baikov, Chetyrkin, Smirnov, Smirnov, Steinhauser '09
Lee, Smirnov, Smirnov 'IO
Gehrmann, Glover, Huber, Ikizlerli, Studerus '09
(ع) Anastasiou, Bühler, Duhr, Herzog 'I2 $\begin{aligned} & \text { Hoschele, Hoff, Pak, Steinhauser, Ueda 'I2 }\end{aligned}$

Anastasiou, Duhr, Dulat, Mistlberger 'I3

Boughezal, Caola, Melnikov, Petriello, Schulze 'I3

Approximate NNNLO:

Higgs hadron-level cross section

Gluon fusion: uncertainties

- perturbative (scale variation)
- $\operatorname{PDF} / \alpha_{s}$
- bottom loop/Yukawa coupling

Gluon fusion: uncertainties

- perturbative (scale variation)
- $\operatorname{PDF} / \alpha_{s}$
- bottom loop/Yukawa coupling

Influence of theory errors

March 2013

Signal strength (μ)

highly unofficial and scetchy!

highly unofficial and scetchy!

highly unofficial and scetchy!

Differential quantities

Transverse momentum:

HqT Bozzi, Catani, de Florian, Grazzini '03
see also: de Florian, Kulesza, Vogelsang '06
Kulesza, Sterman, Vogelsang ’03
Berger, Qiu '03

Transverse momentum:

HqT Bozzi, Catani, de Florian, Grazzini '03
see also: de Florian, Kulesza, Vogelsang '06
Kulesza, Sterman, Vogelsang '03
Berger, Qiu '03

including decay:

de Florian, Ferrera, Grazzini, Tommasini ' \mid I

$$
\sigma_{\infty}^{\mathrm{HO}} \equiv \sigma^{\mathrm{LO}}\left(m_{t}\right)\left(\frac{\sigma^{\mathrm{HO}}}{\sigma^{\mathrm{LO}}}\right)_{m_{t} \rightarrow \infty}
$$

what about NNLO?

$$
\sigma_{\infty}^{\mathrm{HO}} \equiv \sigma^{\mathrm{LO}}\left(m_{t}\right)\left(\frac{\sigma^{\mathrm{HO}}}{\sigma^{\mathrm{LO}}}\right)_{m_{t} \rightarrow \infty}
$$

what about NNLO?

see also Spira, Djouadi, Graudenz, Zerwas '93
Keung, Petriello '09; Brein 'l0;
Bagnasci, Degrassi, Slavich,Vicini 'II Anastasiou, Bucherer, Kunszt '09

see also Spira, Djouadi, Graudenz, Zerwas '93 Keung, Petriello '09; Brein 'IO;

Bagnasci, Degrassi, Slavich,Vicini 'II Anastasiou, Bucherer, Kunszt '09

Other processes

Higgs Strahlung

NLO: Han, Willenbrock '90
NNLO: Brein, Djouadi, RH '03
EW: Ciccolini, Dittmaier, Krämer ’03
vh@nnlo: Brein, RH, Zirke 'I2

Higgs Strahlung

Higgs Strahlung

(c)

Brein, RH,Wiesemann, Zirke 'II

Kniehl '90

Kniehl '90
NLO: Altenkamp, Dittmaier, RH, Rzehak, Zirke 'I2

@ NLO:

Altenkamp, Dittmaier, RH, Rzehak, Zirke 'I2

Higgs Strahlung: fully differential NNLO

$\mathrm{d} \sigma / \mathrm{d} p_{\mathrm{T}, \mathrm{H}}[\mathrm{fb} / \mathrm{GeV}]$
Ferrera, Grazzini, Tramontano 'I2

$\delta_{\mathrm{EW}}[\%]$
Denner, Dittmaier, Kallweit, Mück 'II

$t \bar{t} H$

NLO:
Beenakker, Dittmaier, Krämer, Plümper, Spira, Zerwas 'OI;
Dawson, Reina, Wackeroth, Orr, Jackson '01-'03;

NLO:
Beenakker, Dittmaier, Krämer, Plümper, Spira, Zerwas ' ${ }^{\prime}$ I;
Dawson, Reina, Wackeroth, Orr, Jackson 'OI-'03;

NLO+PS:
Frederix, Frixione, Hirschi, Maltoni, Pittau,Torielli 'l2 \rightarrow alMC@NLO Garzelli, Kardos, Papadopoulos, Trócsányi 'll \rightarrow PowHel

Weak Boson Fusion

NLO QCD: Figy, Oleari, Zeppenfeld '03 \rightarrow vbfnlo NLO QCD+EW: Ciccolini, Denner,

Dittmaier '08 \rightarrow HAWK
NLO SUSY: Figy, Palmer, Weiglein 'IO

Weak Boson Fusion: Beyond NLO

- gluon fusion/WBF interference

Andersen, Binoth, Heinrich, Smillie '07; Bredenstein, Hagiwara, Jäger ’08

- gluon induced WBF

RH,Vollinga, Weber '08

- DIS-like NNLO (inclusive)

Bolzoni, Maltoni, Moch, Zaro 'II

- missing:

Bolzoni, Maltoni, Moch, Zaro 'II

BSM

sensitive to heavy particle spectrum

sensitive to heavy particle spectrum
e.g. 4th generation:

sensitive to heavy particle spectrum
e.g. 4th generation:

$$
\sigma \stackrel{m_{t} \gg M_{H}}{256 \sqrt{2}}\left(\frac{\alpha_{s}}{\pi}\right)^{2}\left(\frac{y_{t}}{m_{t}}\right)^{2}
$$

sensitive to heavy particle spectrum
e.g. 4th generation:

$$
\sigma \stackrel{m_{t} \gg M_{H}}{\pi} \frac{\pi}{256 \sqrt{2}}\left(\frac{\alpha_{s}}{\pi}\right)^{2}\left(\frac{y_{t}}{m_{t}}+\frac{y_{t^{\prime}}}{m_{t^{\prime}}}+\frac{y_{b^{\prime}}}{m_{b^{\prime}}}\right)^{2}
$$

sensitive to heavy particle spectrum
e.g. 4th generation:

$$
\sigma \stackrel{m_{t} \gg M_{H}}{256 \sqrt{2}}\left(\frac{\alpha_{s}}{\pi}\right)^{2}\left(\frac{m_{t}}{m_{t}}+\frac{m_{t^{\prime}}}{m_{t^{\prime}}}+\frac{m_{b^{\prime}}}{m_{b^{\prime}}}\right)^{2}
$$

sensitive to heavy particle spectrum
e.g. 4th generation:

$$
\begin{aligned}
\sigma \stackrel{m_{t} \gg}{\longrightarrow} M_{H} & \pi \\
256 \sqrt{2} & \left(\frac{\alpha_{s}}{\pi}\right)^{2}\left(\frac{m_{t}}{m_{t}}+\frac{m_{t^{\prime}}}{m_{t^{\prime}}}+\frac{m_{b^{\prime}}}{m_{b^{\prime}}}\right)^{2} \\
& =9 \frac{\pi}{256 \sqrt{2}}\left(\frac{\alpha_{s}}{\pi}\right)^{2}
\end{aligned}
$$

sensitive to heavy particle spectrum
e.g. 4th generation:

$$
\begin{aligned}
& \sigma \stackrel{m_{t} \gg M_{H}}{ } \frac{\pi}{256 \sqrt{2}}\left(\frac{\alpha_{s}}{\pi}\right)^{2}\left(\frac{m_{t}}{m_{t}}+\frac{m_{t^{\prime}}}{m_{t^{\prime}}}+\frac{m_{b^{\prime}}}{m_{b^{\prime}}}\right)^{2} \\
&=9 \frac{\pi}{256 \sqrt{2}}\left(\frac{\alpha_{s}}{\pi}\right)^{2}
\end{aligned}
$$

sensitive to heavy particle spectrum

Supersymmetry

sensitive to heavy particle spectrum

Supersymmetry

sensitive to heavy particle spectrum
LHC Higgs XSWG:
$\sigma^{\mathrm{MSSM}}(\operatorname{gg} \rightarrow \phi)=\left(\frac{g_{\mathrm{t}}^{\mathrm{MSSM}}}{g_{\mathrm{t}}^{\mathrm{SM}}}\right)^{2} \sigma_{\mathrm{tt}}(\mathrm{gg} \rightarrow \phi)+\left(\frac{g_{\mathrm{b}}^{\mathrm{MSSM}}}{g_{\mathrm{b}}^{\mathrm{SM}}}\right)^{2} \sigma_{\mathrm{bb}}(\operatorname{gg} \rightarrow \phi)+\frac{g_{\mathrm{t}}^{\mathrm{MSSM}}}{g_{\mathrm{t}}^{\mathrm{SM}}} \frac{g_{\mathrm{b}}^{\mathrm{MSSM}}}{g_{\mathrm{b}}^{\mathrm{SM}}} \sigma_{\mathrm{tb}}(\mathrm{gg} \rightarrow \phi)$,

Supersymmetry

sensitive to heavy particle spectrum
LHC Higgs XS WG:
$\sigma^{\mathrm{MSSM}}(\mathrm{gg} \rightarrow \phi)=\left(\frac{g_{\mathrm{t}}^{\mathrm{MSSM}}}{g_{\mathrm{t}}^{\mathrm{SM}}}\right)^{2} \sigma_{\mathrm{tt}}(\mathrm{gg} \rightarrow \phi)+\left(\frac{g_{\mathrm{b}}^{\mathrm{MSSM}}}{g_{\mathrm{b}}^{\mathrm{SM}}}\right)^{2} \sigma_{\mathrm{bb}}(\operatorname{gg} \rightarrow \phi)+\frac{g_{\mathrm{t}}^{\mathrm{MSSM}}}{g_{\mathrm{t}}^{\mathrm{SM}}} \frac{g_{\mathrm{b}}^{\mathrm{MSSM}}}{g_{\mathrm{b}}^{\mathrm{SM}}} \sigma_{\mathrm{tb}}(\operatorname{gg} \rightarrow \phi)$,

All contributions for NLO MSSM Higgs known:

Supersymmetry

sensitive to heavy particle spectrum

LHC Higgs XSWG:

$\sigma^{\mathrm{MSSM}}(\mathrm{gg} \rightarrow \phi)=\left(\frac{g_{\mathrm{t}}^{\mathrm{MSSM}}}{g_{\mathrm{t}}^{\mathrm{SM}}}\right)^{2} \sigma_{\mathrm{tt}}(\mathrm{gg} \rightarrow \phi)+\left(\frac{g_{\mathrm{b}}^{\mathrm{MSSM}}}{g_{\mathrm{b}}^{\mathrm{SM}}}\right)^{2} \sigma_{\mathrm{bb}}(\operatorname{gg} \rightarrow \phi)+\frac{g_{\mathrm{t}}^{\mathrm{MSSM}}}{g_{\mathrm{t}}^{\mathrm{SM}}} \frac{g_{\mathrm{b}}^{\mathrm{MSSM}}}{g_{\mathrm{b}}^{\mathrm{SM}}} \sigma_{\mathrm{tb}}(\mathrm{gg} \rightarrow \phi)$,

All contributions for NLO MSSM Higgs known:

NLO: RH, Steinhauser '04; Anastasiou, Beerli, Daleo '08; + Bucherer, Kunszt '06;
Mühlleitner, Rzehak, Spira '07/'08; Aglietti, Bonciani, Degrassi,Vicini '06;
RH, Hofmann, Mantler 'II; Degrassi, Slavich '08/'I0; + Bagnaschi,Vicini 'II/'I2

Supersymmetry

sensitive to heavy particle spectrum

LHC Higgs XSWG:

$\sigma^{\mathrm{MSSM}}(\mathrm{gg} \rightarrow \phi)=\left(\frac{g_{\mathrm{t}}^{\mathrm{MSSM}}}{g_{\mathrm{t}}^{\mathrm{SM}}}\right)^{2} \sigma_{\mathrm{tt}}(\mathrm{gg} \rightarrow \phi)+\left(\frac{g_{\mathrm{b}}^{\mathrm{MSSM}}}{g_{\mathrm{b}}^{\mathrm{SM}}}\right)^{2} \sigma_{\mathrm{bb}}(\operatorname{gg} \rightarrow \phi)+\frac{g_{\mathrm{t}}^{\mathrm{MSSM}}}{g_{\mathrm{t}}^{\mathrm{SM}}} \frac{g_{\mathrm{b}}^{\mathrm{MSSM}}}{g_{\mathrm{b}}^{\mathrm{SM}}} \sigma_{\mathrm{tb}}(\mathrm{gg} \rightarrow \phi)$,

All contributions for NLO MSSM Higgs known:

NLO: RH, Steinhauser '04; Anastasiou, Beerli, Daleo '08; + Bucherer, Kunszt '06;
Mühlleitner, Rzehak, Spira '07/'08; Aglietti, Bonciani, Degrassi,Vicini '06;
RH, Hofmann, Mantler 'II; Degrassi, Slavich '08/'I0; + Bagnaschi,Vicini 'II/'I2
Even NNLO: RH, Steinhauser '03; Pak, Steinhauser, Zerf 'I2
－SusHi
－Changelog
－Examples
－Contact
－Download

SusHi

Download

Version 1.0 .5 （13．03．2013）is available here：Download

Details

SusHi（Supersymmetric Higgs）is a Fortran code，which calculates Higgs cross sections in gluon fusion and bottom－quark annihilation at hadron colliders in the SM and the MSSM．Apart from inclusive cross sections up to NNLO QCD，differential cross sections with respect to the Higgs＇transverse momentum and（pseudo）rapidity can be calculated． In case of gluon fusion，SusHi contains NLO QCD contributions from the third family of quarks and squarks，NNLO corrections due to top－quarks，approximate NNLO corrections due to top squarks and electro－weak effects．It supports various renormalization schemes for the sbottom sector and the bottom Yukawa coupling，as well as resummation effects of higher order \tan（beta）－enhanced sbottom contributions．SusHi provides a link to FeynHiggs for the calculation of Higgs masses in the MSSM．

Starting with V 1．0．2 gluon fusion and bottom－quark annihilation cross sections for the 2 －Higgs－Doublet－Model（2HDM）can be calculated．Our notation is shortly explained here．
For example input and output files regarding recent MSSM benchmark scenarios we refer to the＂Examples＂page as well．

Reference

If you use SusHi for your publication，please refer to the following paper：
SusHi：A program for the calculation of Higgs production in gluon fusion and bottom－quark annihilation in the Standard Model and the MSSM
Robert V．Harlander，Stefan Liebler，Hendrik Mantler
M Google Mail YahoolMail Wupper!Mail Albums mac home

- SusHi
- Changelog
- Examples
- Contact
- Download

SusHi

Download

Version $1.0 .5(13.03 .2013)$ is availa

Details

SusHi (Supersymmetric Higgs) is a in gluon fusion and bottom-quark an MSSM. Apart from inclusive cross s with respect to the Higgs' transverse In case of gluon fusion, SusHi conte of quarks and squarks, NNLO corre due to top squarks and electro-weal for the sbottom sector and the botto higher order tan(beta)-enhanced sb for the calculation of Higgs masses

Starting with V 1.0 .2 gluon fusion an for the 2-Higgs-Doublet-Model (2 H shortly explained here.

For example input and output files r we refer to the "Examples" page as

- full MSSM @ NLO
- SM @ NNLO
- 2HDM
- bbh
- various ren. schemes
- link to FeynHiggs
- link to LHAPDF
- ... RH, Liebler, Mantler 'I2

Reference

If you use SusHi for your publication, please refer to the following paper:
SusHi: A program for the calculation of Higgs production in gluon fusion and bottom-quark annihilation in the Standard Model and the MSSM
Robert V. Harlander, Stefan Liebler, Hendrik Mantler

Implications

Hambye, Riesselmann '97

Hambye, Riesselmann '97

Hambye, Riesselmann '97

Degrassi, Di Vita, Elias-Miro, Espinosa, Giudice, Isidori, Strumia '12

What about fine tuning?

Degrassi, Di Vita, Elias-Miro, Espinosa, Giudice, Isidori, Strumia '12

Degrassi, Di Vita, Elias-Miro, Espinosa, Giudice, Isidori, Strumia '12

Shaposhnikov, Wetterich '10
 at zero. This results in $m_{H}=m_{\min }=126 \mathrm{GeV}$, with only a few GeV uncertainty. This ls of the short distance running and holds for a wide class of extensions of the SM as well.

Will our universe end in a 'big slurp'? Higgs-like particle suggests it might

Conclusions

- Heuer: I think we have it! RH: Me too.
- importance of theory undeniable
- error estimates will become crucial
- revival of precision physics? hopefully not...

NNLO jet veto:

$\sigma(0-j e t)=\sigma(t o t a l)-\sigma(\geq I-j e t)$

NNLO

NLO

Catani, de Florian, Grazzini '02

Anastasiou, Dissertori, Grazzini, Stöckli,Webber '09

Stewart, Tackmann 'II

Jet veto efficiency:

$$
\begin{gathered}
\epsilon^{(a)}\left(p_{\mathrm{t}, \text { veto }}\right) \equiv \frac{\Sigma_{0}\left(p_{\mathrm{t}, \text { veto }}\right)+\Sigma_{1}\left(p_{\mathrm{t}, \text { veto }}\right)+\Sigma_{2}\left(p_{\mathrm{t}, \text { veto }}\right)}{\sigma_{0}+\sigma_{1}+\sigma_{2}} \\
\epsilon^{(b)}\left(p_{\mathrm{t}, \text { veto }}\right) \equiv \frac{\Sigma_{0}\left(p_{\mathrm{t}, \text { veto }}\right)+\Sigma_{1}\left(p_{\mathrm{t}, \text { veto }}\right)+\bar{\Sigma}_{2}\left(p_{\mathrm{t}, \text { veto }}\right)}{\sigma_{0}+\sigma_{1}} \\
\epsilon^{(c)}\left(p_{\mathrm{t}, \text { veto }}\right) \equiv 1+\frac{\bar{\Sigma}_{1}\left(p_{\mathrm{t}, \text { veto }}\right)}{\sigma_{0}}+\left(\frac{\bar{\Sigma}_{2}\left(p_{\mathrm{t}, \text { veto }}\right)}{\sigma_{0}}-\frac{\sigma_{1}}{\sigma_{0}^{2}} \bar{\Sigma}_{1}\left(p_{\mathrm{t}, \text { veto }}\right)\right) \\
\text { perturbatively equivalent }
\end{gathered}
$$

Higgs production ($\mathrm{m}_{\mathrm{H}}=125 \mathrm{GeV}$), NNLO

Banfi, Salam, Zanderighi 'I2

Resummation:

see also
Becher, Neubert 'I2
Tackmann, Walsh, Zuberi 'l2

Banfi, Monni, Salam, Zanderighi 'I2

$$
\begin{aligned}
m_{t} & =173.2 \mathrm{GeV}, \\
M_{\mathrm{SUSY}} & =1000 \mathrm{GeV}, \\
\mu & =200 \mathrm{GeV}, \\
M_{2} & =200 \mathrm{GeV}, \\
X_{t}^{\mathrm{OS}} & =1.5 M_{\text {SUSY }} \text { (FD calculation) }, \\
X_{t}^{\overline{\mathrm{MS}}} & =1.6 M_{\text {SUSY }} \text { (RG calculation) }, \\
A_{b} & =A_{\tau}=A_{t} \\
m_{\tilde{g}} & =1500 \mathrm{GeV}, \\
M_{\tilde{l}_{3}} & =1000 \mathrm{GeV} .
\end{aligned}
$$

Carena, Heinemeyer, Stål, Wagner, Weiglein '13

- collinear logarithms:
$\sim \alpha_{s} \operatorname{In}\left(m_{b} / M_{H}\right) \sim \alpha_{s} \ln (5 / 200)$
- resummation:
bottom quarks as partons

4FS

5FS

Santander matching:

$$
\begin{aligned}
\sigma & =\frac{\sigma^{4 F S}+w \sigma^{5 F S}}{1+w} \\
w & =\log \frac{M_{H}}{m_{b}}-1
\end{aligned}
$$

RH, Krämer, Schumacher 'II
see also
Maltoni, Ridolfi, Ubiali ' 12

Santander matching

RH, Krämer, Schumacher 'II

NNLO jet veto:

[^0]: ferannoc in the maconanf thanhntonn and inter-

