Study of the decay channel $B^0 \rightarrow \psi(2S)\pi^0$

Elena Nedelkovska, Jeremy Dalseno, Christian Kiesling, Luigi Li Gioi <u>Max-Planck Institute for physics, Munich</u>

- Physics Motivation
- Signal MC Studies
- ≻ Toy MC
- Summary and outlook

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

DPG - Frühjahrstagung 06.03.2013, Dresden, Germany

Physics Motivation

Standard Model is successful but not complete

- Cannot explain the **Dark Matter**
- Assumes massless Neutrinos
- Insufficient explanation of the Matter-Antimatter Asymmetry

CP Violation in the Standard Model

CP violation in the Standard Model 🗭 Cabibbo-Kobayashi-Maskawa (CKM)mechanism is relation between the weak and the mass eigenstates $\begin{pmatrix} d \\ s' \\ b' \end{pmatrix} = V^{CKM} \begin{pmatrix} d \\ s \\ b \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$ V_{ii} : quark flavor transition couplings $V^{CKM} = \begin{pmatrix} 1 - \lambda^2 / 2 & \lambda & A\lambda^3 (\rho - i\eta) \\ -\lambda & 1 - \lambda^2 / 2 & -A\lambda^2 \\ A\lambda^3 (1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$ CKM matrix is unitary $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$ Wolfenstein parametrization $\lambda = \sin \theta_{C} \approx 0.22 (Cabibbo angle)$ $O(\lambda^3)$ $O(\lambda^3)$ $O(\lambda^3)$ 4 free parameters: relevant for the B meson system 3 \geq 3 real parameters Sides with similar size \rightarrow large angles \geq 1 complex phase 5 observables (2 sides, 3 angels)

CP Violation in the B meson system

Time-dependent CP asymmetry

B Meson Production

Signal Monte Carlo study

Reconstructed B mesons – described by:

Branching fraction – Control Sample

 $Br(B^+ \to \psi(2S)K^{*+}) = (7.3 \pm 0.5) \times 10^{-4}$

 $Br(B^+ \to \psi(2S)K^{*+}) = (6.1 \pm 1.2) \times 10^{-4}$

Complete fit of the MC sample

10

Toy MC

11

Summary and outlook

> $B^{0} \rightarrow \psi(2S)\pi^{0}$ helps to estimate the penguin pollution in $B^{0} \rightarrow \psi(2S)K_{S}^{0}$, one of the "golden" modes

Clean experimental signature and relatively small background

- Signal Monte Carlo studies
- Parameterize the distribution with functions
- Study the background from separate B decays
- > Test the model with pseudo experiments
- ➤ Apply the model to the real data
- ➤ Measure the branching fraction
- ≻ World's first measurement

Backup

Reconstruction of $B^0 \rightarrow \psi(2S)\pi^0$

For the e^+e^- decay mode:

eid.prob(3,-1,5) > 0.01 $eid.prob(3,-1,5) > 0.01; eid.le_eoverp() > 0.5 \parallel eid.le_dedx() > 0.5$ radiate photons – ECL clusters within 50 mrad of the e^+e^- tracks $\implies E < 3.5 \text{GeV}$ $-150 \le m_{e^+e^-} - m_{\psi(2S)(J/\psi)} \le 36 MeV / c^2$ Entries/(0.0018Ge//c²) ×10³ Entries/(0.002GeV/c²) $\psi(2S) \rightarrow e^+ e^ J/\psi \rightarrow e^+e^-$ 14 0^t 3.55 3.65 3.7 .1 3.15 m_{e⁺e} [GeV/c²] 3.6 3.75 3 3.05 3.1 m_{e⁺e} [GeV/c²]

Reconstruction of $B^0 \rightarrow \psi(2S)\pi^0$

Best B^0 selection

 \succ choose B meson with smallest

Signal Monte Carlo study

Reconstructed B mesons – described by:

Misreconstructed Signal

smoothed histogram PDFs

10 % misreconstructed particles

18

Background

 $B \rightarrow (c \bar{c}) X$

smoothed histogram PDFs

Control Sample~ Misreconstructed Signal

Control Sample ~Background

 $B \rightarrow (c \bar{c}) X$

smoothed histogram PDFs

Determination of the efficiency

Control Sample

SVD1: Eff $(B^0 \to \psi(2S)\pi^0) = 0.0087 \pm 0.0003$ SVD2: Eff $(B^0 \to \psi(2S)\pi^0) = 0.0106 \pm 0.0003$

SVD1: Eff $(B^0 \rightarrow \psi(2S)K^{*+}) = 0.0018 \pm 3.36e - 05$ SVD2: Eff $(B^0 \rightarrow \psi(2S)K^{*+}) = 0.0024 \pm 4.17e - 05$ 23

Psi2S Sideband

3.45 < m(ll) < 3.53 or

3.8 < m(ll) < 3.9

J/Psi Sideband

2.6 < m(ll) < 2.8 or

3.2 < m(ll) < 3.4

PiPi Sideband

 $0.49 < m(\pi\pi) < 0.53$ or

 $0.64 < m(\pi\pi) < 0.68$

