Corrections to Higgs Boson Masses in the MSSM

Sebastian Paßehr in collaboration with Wolfgang Hollik

Max Planck Institute for Physics, Munich

Dresden, 4th of March 2013

content

- Higgs Bosons
- 2 Experimental Hint
- **3** Higher Order Corrections
- **4** Order α_t^2 Corrections
- **6** Status and Outlook

Higgs mechanism

Standard Model:

• add complex SU(2)-field with non-trivial vacuum expectation value to the Lagrangian density:

$$\mathcal{L}_{\mathsf{Higgs}} = (D^{\mu}\phi)^{\dagger} (D_{\mu}\phi) + \mu^{2}\phi^{\dagger}\phi - \frac{\lambda}{4} (\phi^{\dagger}\phi)^{2}$$
$$+ y_{d} (\psi_{\mathsf{L}} \cdot \phi) \psi_{\mathsf{R}}^{d} + y_{u} (\psi_{\mathsf{L}} \cdot \phi^{\dagger}) \psi_{\mathsf{R}}^{u},$$

- explanation of fundamental particle's masses,
- restore unitarity,
- four degrees of freedom: 3 Goldstone bosons, 1 physical Higgs boson,
- two free parameters: μ , λ , corresponding to m_h and v,
- tree-level mass of the physical Higgs boson $m_h^2 = 2\mu^2 = \frac{\lambda v^2}{2}$.

Higgs mechanism

Supersymmetry:

• Lagrangian density composed of gauge terms, matter terms and the superpotential \mathcal{W} :

$$\mathcal{L}_{ extsf{SUSY}} = \mathcal{L}_{ extsf{gauge}} + \mathcal{L}_{ extsf{matter}} + \left(\int \mathrm{d}^2 heta \mathcal{W} + ext{h. c.}\right),$$
 $\mathcal{W} = c_i \Phi_i + rac{1}{2} m_{ij} \Phi_i \Phi_j + rac{1}{6} y_{ijk} \Phi_i \Phi_j \Phi_k,$

- \mathcal{W} must be analytic to preserve supersymmetry (Φ and Φ^{\dagger} together not allowed),
- at least two complex SU(2)-Higgs doublets necessary,

$$h_1 = \begin{pmatrix} \frac{1}{\sqrt{2}} \left(v_1 + \phi_1^0 - \mathrm{i} \gamma_1^0 \right) \\ -\phi_1^- \end{pmatrix} \quad \text{and} \quad h_2 = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}} \left(v_2 + \phi_2^0 - \mathrm{i} \gamma_2^0 \right) \end{pmatrix},$$

eight bosonic degrees of freedom:
 3 Goldstone bosons, 5 physical Higgs bosons.

Higgs potential in the MSSM

Higgs potential fixed by Lagrangian density:

$$\begin{split} V_{\mathsf{Higgs}} &= \mathit{m}_{1}^{2}\mathit{h}_{1}^{\dagger}\mathit{h}_{1} + \mathit{m}_{2}^{2}\mathit{h}_{2}^{\dagger}\mathit{h}_{2} - \mathit{m}_{12}^{2}\left(\mathit{h}_{1}\cdot\mathit{h}_{2} + \mathit{h}_{1}^{\dagger}\cdot\mathit{h}_{2}^{\dagger}\right) \\ &+ \frac{1}{8}\left(\mathit{g}_{1}^{2} + \mathit{g}_{2}^{2}\right)\left(\mathit{h}_{2}^{\dagger}\mathit{h}_{2} - \mathit{h}_{1}^{\dagger}\mathit{h}_{1}\right)^{2} + \frac{1}{2}\mathit{g}_{2}^{2}\mathit{h}_{1}^{\dagger}\mathit{h}_{1}\mathit{h}_{2}^{\dagger}\mathit{h}_{2}, \end{split}$$

tree-level masses correlated:

$$\begin{split} m_{H^0,h^0}^2 &= \frac{1}{2} \left(m_{A^0}^2 + m_Z^2 \pm \sqrt{\left(m_{A^0}^2 + m_Z^2 \right)^2 - \left(2 m_Z m_{A^0} \cos 2 \beta \right)^2} \right), \\ m_{H^\pm}^2 &= m_{A^0}^2 + m_W^2, \end{split}$$

- two free parameters: conventionally $\tan \beta = \frac{v_2}{v_1}$, m_{A^0} ,
- theoretical upper bound: $m_{h^0}^2 \leq (m_Z \cos 2\beta)^2$.

LHC discovery

- 4th of July in 2012:
 ATLAS and CMS both declare the discovery of a new particle
- recent result:

[Fleischmann, Epiphany 2013],

- it is a boson with a mass of (125.2 \pm 0.3(stat) \pm 0.6(sys)) GeV, [Fleischmann, Epiphany 2013],
- it could be a Higgs particle.

one-loop corrections

• main contributions come from t and \tilde{t} loops; order α_t , but proportional to m_t^4 :

$$\Sigma_{hh} = -\frac{1}{h^0} \left(\frac{\tilde{t}}{h^0} + -\frac{1}{h^0} \left(\frac{\tilde{t}}{\tilde{t}} \right) - \frac{1}{h^0} + -\frac{1}{h^0} \frac{\tilde{t}}{h^0} \right)$$

- additional parameters: $\mu, m_{\tilde{t}_R}, m_{\tilde{q}_L}, a_t$,
- mass contribution: ca. 40% of tree-level result,
- determination of the Higgs masses means finding the poles of the propagator matrix; in the real MSSM:

$$\begin{vmatrix} p^2 - m_{H^0}^2 + \hat{\Sigma}_{H^0H^0}(p^2) & \hat{\Sigma}_{h^0H^0}(p^2) \\ \hat{\Sigma}_{H^0h^0}(p^2) & p^2 - m_{h^0}^2 + \hat{\Sigma}_{h^0h^0}(p^2) \end{vmatrix} = 0,$$

uncertainty of the calculation still too big.

two-loop corrections

most important parts: corrections to m_t -enhanced one-loop contributions in a gauge-less limit,

• corrections by gluons and gluinos already known, order $\alpha_t \alpha_s$ in an on-shell scheme,

[Heinemeyer, Hollik, Rzehak, Weiglein, arXiv:hep-ph/0705.0746, 2007],

• corrections by Higgs and Higgsinos already known in the real MSSM in the effective potential approach, order α_t^2 in a $\overline{\rm DR}$ scheme,

[Brignole, Degrassi, Slavich, Zwirner, arXiv:hep-ph/0112177, 2002],

 corrections by Higgs and Higgsinos in the case of the complex MSSM: in process.

order α_t^2

- again: enhancement by additional m_t^2 ,
- Feynman-diagrammatic approach:

• $(\delta^{(2)}) + (\delta^{(1)})^2$ acquired by renormalizing the Higgs potential, additional Feynman-diagrams necessary:

extension by complex parameters

mixing of former *CP*-even and *CP*-odd Higgs possible: $(h^0, H^0, A^0) \rightarrow (h_1, h_2, h_3)$,

- m_{A^0} not a useful input parameter anymore,
- (3×3) -propagator matrix, (at one-loop (5×5)),
- m_{H±} input parameter instead, also charged Higgs boson self energy has to be calculated,
- complex phases appear for A_t , μ and $m_{\tilde{g}}$, have to be renormalised.

procedure of calculation

- creation of Feynman-diagrams and amplitudes with FeynArts, [Hahn, arXiv:hep-ph/0012260, 2001],
- applying approximations,
- reducing one-loop diagrams to master integrals with FormCalc,

```
[Hahn, arXiv:hep-ph/0901.1528, 2009],
```

- reducing two-loop diagrams to master integrals with TwoCalc, [Weiglein, Scharf, Böhm, arXiv:hep-ph/9310358, 1993],
- creating counterterms from the Higgs potential,
- applying renormalisation scheme,
- evaluating renormalisation constants with FeynArts and FormCalc,
- · expanding master integrals, simplifying result.

applied approximations

(similar as for $\alpha_t \alpha_s$ corrections)

- **1** gauge-less limit: $g_1 = 0$, $g_2 = 0$,
 - only Yukawa-couplings left,
 - $m_W = 0$, $m_Z = 0$,
 - $m_{h^0}=0$, $m_{G^0}=0$, $m_{G^\pm}=0$, $m_{H^0}=m_{H^\pm}$, $m_{A^0}=m_{H^\pm}$,
 - $m_{\tilde{\chi}_3^0} = -\mu$, $m_{\tilde{\chi}_4^0} = \mu$, $m_{\tilde{\chi}_2^{\pm}} = \mu$,
 - other Charginos and Neutralinos decouple,
 - Higgs mixing angle $\alpha = \beta \frac{\pi}{2}$,
- 2 external momentum equal to zero,
 - only two-loop vacuum diagrams; known analytically,
 - renormalisation constants for genuine two-loop counterterms calculated at zero momentum,
- 3 bottom mass equal to zero,
 - no mixing in sbottom sector,
 - one sbottom (w. l. o. g. \tilde{b}_2) decouples,
 - $m_{\tilde{h}_t}^2 = m_{\tilde{t}_1}^2 m_t^2$.

renormalisation scheme

required renormalisation constants:

- 1 at one-loop:
 - δm_t , $\delta m_{\tilde{t}_1}$ and $\delta m_{\tilde{t}_2}$ fixed by on-shell condition,
 - $\delta m_{\tilde{b}_1}$ dependent on top-stop-sector,
 - δA_t fixed by on-shell condition for mixing of stops,
 - $\delta\mu$ fixed by on-shell condition for $\tilde{\chi}_2^{\pm}$,
 - $\delta \tan \beta = \frac{\tan \beta}{2} (\delta Z_{H_2} \delta Z_{H_1}) \Big|_{\text{div.}}$, $\overline{\text{DR}}$ scheme,
 - Higgs field renormalisation constants $\delta Z_{H_1}|_{\text{div}}$ and $\delta Z_{H_2}|_{\text{div}}$, $\overline{\text{DR}}$ scheme,
- 2 at one-loop and two-loop:
 - tadpoles δt_{h^0} , δt_{H^0} , δt_{A^0} fixed by on-shell conditions,
 - $\delta m_{H^{\pm}}$ fixed by on-shell condition,
 - $\delta m_{h^0}, \delta m_{H^0}, \delta m_{A^0}$ and $\delta m_{h^0H^0}, \delta m_{h^0A^0}, \delta m_{H^0A^0}$ dependent on tadpoles and δm_{H^\pm} .

status and outlook

current status:

- all Feynman-diagrams are generated and calculated,
- renormalisation at work,
- MSSM model file (e.g. for FeynArts) further improved,

outlook:

- numerical analysis,
- inclusion into FeynHiggs,

```
[Hahn, Heinemeyer, Hollik, Rzehak, Weiglein, arXiv:hep-ph/1007.0956, 2010],
```

• investigate influence of external momentum.