Hochratenverhalten von Driftrohrkammern

 Oliver Kortner¹
 Hubert Kroha¹
 Alessandro Manfredini¹
 Sebastian Nowak¹

 Robert Richter¹
 Philipp Schwegler¹
 Daniele Zanzi¹

 Stefanie Adomeit²
 Otmar Biebel²
 Ralf Hertenberger²
 Alexander Ruschke²

 Christopher Schmitt²
 André Zibell²

philipp.schwegler@mppmu.mpg.de

¹ Max-Planck-Institut für Physik, München

²Ludwig-Maximilians-Universität, München

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) DPG Frühjahrstagung Dresden, 4. März 2013

ATLAS Monitored Drift Tube (MDT)-Kammern

Problematik

Hoher Kavernenuntergrund, bestehend hauptsächlich aus Photonen und Neutronen, die in Sekundärreakionen in Strahlrohr und Abschirmung entstehen.

- 30 mm Rohrdurchmesser
- Gasgemisch: Ar/CO₂ (93/7) bei 3 bar absolutem Druck
- Max. Driftzeit: \approx 700 ns
- Einzelrohrauflösung: 80 µm ohne Untergrundstrahlung
- Spurrekonstruktionsauflösung einer Kammer: $\approx 40\,\mu\text{m}$

Belegungsrate

Ar/CO2 (93/7) als Driftgas:

- keine Alterungseffekte
- Nichtlineare Orts-Driftzeit-Beziehung r(t)

Belegungsrate:

Belegungsrate = Zählrate \times maximale Driftzeit

- maximale Driftzeit:
 - 30 mm MDT: 700 ns
 - I5 mm sMDT: 185 ns
- \Rightarrow gewinne Faktor 3.8
 - Zählrate:
- ⇒ gewinne Faktor 2 wegen halbierter Querschnittsfläche

Orts-Driftzeit-Beziehung r(t) für Driftrohre mit 15 mm fast linear!

Hochrateneffekte Maskierung durch Totzeit

- Ein Treffer kann mehrfache Schwellenübergänge verursachen
- ⇒ Front-End Elektronik ermöglicht einstellbare Totzeit
- ⇒ (Untergrund)treffer maskieren aufgrund der Totzeit nachfolgende Treffer
- $\bullet \ {\rm Pulslänge} \sim {\rm Rohrdurchmesser}$
- Rohre mit kleinerem Durchmesser erlauben kürzere Totzeit
- ⇒ weniger Effizienzverlust

- Langes Signal der nach außen driftenden lonen
- Bipolares Signalshaping zur schnellen Baseline-Restoration

Hochrateneffekte

Signal Pile-up

optimale Effizienz bei möglichst kurzer Totzeit

aber: vorangeganene Pulse haben Einfluss auf nachfolgende Pulse

- \Rightarrow systematische Verschiebung abhängig von Pulsform und zeitlichem Abstand
 - kann teilweise korrigiert werden. Besser: optimiertes Signal-Shaping
 - bei großen Pulshöhenvariationen können Treffer verloren gehen

Abnahme der Gasverstärkung

Vom Anodendraht nach außen driftende Ionen schwächen das elektrische Feld auf der Drahtoberfläche

Iterative Berechnung der Gasverstärkung mit Diethorn-Formel:

$$G = \left[\frac{E_{\text{wire}}}{3E_{\text{min}}}\right]^{\frac{f_{\text{wire}}E_{\text{wire}}\ln 2}{\Delta V}}$$

 $E_{\rm wire}$ ist das elektrische Feld auf der Drahtoberfläche, abhängig von der Raumladung und damit vom Untergrundfluss.

G₀ = nominelle Gasverstärkung = 20000

- Raumladungseffekte sind $\sim R^3$ für Photonen $\sim R^4$ für geladene Teilchen
- Dominierender Untergrund in ATLAS sind Photonen
- \Rightarrow Halbierung des Rohrdurchmessers erhöht die Ratenfähigkeit um Faktor 8

Hochrateneffekte Raumladungsfluktuationen

Weiterer Effekt durch Raumladung

- Raumladung fluktuiert zeitlich
- \Rightarrow Raumladungseffekte variieren dem Driften der Elektronen
- \Rightarrow Auflösungsverschlechterung \sim Driftzeit/radius

Effekt verschwindet praktisch für Driftrohre mit 15 mm Durchmesser

Messung in der Gamma Irradiation Facility (CERN) Gamma-Bestrahlung

Kein Myonstrahl in der GIF:

- Extrapolation in die bestrahlten Rohre.

Bestimmung von Auflösung und Effizienz aus off-track Residuen:

- Korrektur der Spurunsicherheit und Vielfachstreuung \Rightarrow Einzelrohrauflösung σ
- Bestimmung der 3σ Einzelrohreffizienz.

Weitere Messungen mit Protonbestrahlung, siehe T 72.6 (Andre Zibell)

Messergebnisse Gasverstärkung

Zwei Methoden zur Messung der Gasverstärkung:

- aus dem Strom I = R · Q · G, mit R: Zählrate, Q: Ionisationsladung, G: Gasverstärkung

Gamma-Bestrahlung:

9/11

Messergebnisse

Einzelrohrauflösung:

Einzelrohreffizienz

- Halbierung des Rohrdurchmessers bringt erhebliche Verbesserung
- Verbesserung durch k
 ürzere Totzeit kann weiter verbessert werden durch optimiertes Signalshaping

Weiterer Vorteil des kleineren Rohrdurchmessers: Halbierter Rohrdurchmesser erlaubt doppelte Anzahl an Rohrlagen im gleichen Volumen

 \Rightarrow Bessere Mustererkennung und Kammerauflösung

Zusammenfassung

- Auflösung und Effizienz von Driftrohrkammern verschlechtern sich bei hohen Raten durch:
 - Signal Pile-up schnell aufeinander folgender Treffer
 - Abnahme der Gasverstärkung
 - Fluktuationen der Raumladung
 - Treffermaskierung aufgrund der Totzeit
- Halbierung des Rohrdurchmessers sehr effektives Mittel:
 - kürzere Totzeit möglich (790 ns \rightarrow 185 ns)
 - Verlust der Gasverstärkung um Faktor 8 abgeschwächt
 - Auflösungsverschlechterung durch Fluktuationen der Raumladung praktisch eliminiert
- Weitere Verbesserung möglich durch optimiertes Signalshaping
 - Neuer ASD-Chip in Entwicklung

Danke für die Aufmerksamkeit!