Run Number: 182796

Suche nach dem Higgs-Boson im Kanal $pp \rightarrow H \rightarrow ZZ^{(*)} \rightarrow 4\ell$ und Massenmessung mit dem ATLAS-Detektor

Katharina Ecker, betreut von Oliver Kortner DPG 2013 (04.-08.03. 2013, Dresden) **FSP 101** Ap Ag > 1t Max-Planck-Institut für Physik

(Werner-Heisenberg-Institut)

Produktion von Higgsbosonen am LHC

Higgs-Zerfallskanal $H ightarrow ZZ^{(*)} ightarrow 4\ell$

• $H \rightarrow ZZ^{(*)} \rightarrow 4\ell \ (I = \mu, e)$ nur Suche nach Myonen und Elektronen

ightarrow Mögliche Endzustände 4 μ 4*e* und 2 μ 2*e*

- Kleines Verzweigungsverhältnis
 → Hohe Nachweiseffizienz von
 Myonen und Elektronen nötig
- Klare experimentelle Signatur
- Hohe Massenauflösung

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CrossSections

Suche nach SM $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$

Untergründe

• Irreduzibler Untergrund: SM $ZZ^{(*)} \rightarrow 4\ell$ Kann nicht von Signal unterschieden werden

Reduzible Untergründe:

Können durch Analyseschnitte reduziert werden

- Z + jets: Isolierungsschnitte
- $Z + b\bar{b}$: Isolierungs- und Stoßparameterschnitte
- tt: Isolierungs- und Stoßparameterschnitte

Selektion

- Schnittbasierte Analyse, die nach 2 Leptonpaaren mit jeweils unterschiedlicher Ladung sucht e^+e^- und $\mu^+\mu^-$
- Standard Anforderungen: Myonen (Elektronen) $p_{T_{(1,2,3,4)}} > (20, 15, 10, 6(7))$ GeV, $|\eta| < 2.7(2.47)$, Trigger, Rekonstruktionsqualität
- Verringerung Untergrund: Isolierte Leptonen, Schnitt auf Stoßparameter $|z_0| < 10 \text{ mm}, \frac{|d_0|}{\sigma_{d_0}} < 3.5(6.5)$
- Für *M_H* < 2*M_Z*: Einteilung Leptonpaare kommend von On-Shell *Z* und Off-Shell *Z**:
 - ightarrow 4 Kanäle: 4 μ , 4e, 2 μ 2e und 2e2 μ
- Einteilung in Produktionsmodus ggF, VBF oder VH

Suche nach SM $H \to ZZ^{(*)} \to 4\ell$

2011 und 2012 Kandidaten (Stand Dezember 2012)

Anzahl an erwarteten und beobachteten Ereignissen:

 p_0 Wert: Wahrscheinlichkeit, dass Untergrundfluktuation größer oder gleich der beobachteten Daten ist

K.Ecker (MPI)

- Wegen schmaler Resonanz geeignet f
 ür Massenmessung (zusammen mit $H \rightarrow \gamma \gamma$)
- Massenfit in $H \rightarrow 4\ell$ mit Hilfe von simulationsbasierten Referenzhistogrammen ("MC templates")
- Zusätzlich zur Gegenprobe: Massenmessung mit analytischer Fitfunktion

Analytische Fitfunktion für die Massenmessung

Massenfehler kann von Ereignis zu Ereignis variieren

 \rightarrow Miteinbeziehen von σ_m pro Ereignis

Analytische Fitfunktion:

 $F(m,\sigma_m) = (g \times T) (m,\sigma_m)$

Higgssignal auf Generatorebene $g(M_H)$ Detektorantwort auf $M_{4/} T(m, \sigma_m)$

Für Myonen: $T(m, \sigma_m)$ folgt Gauß-Verteilung Für Elektronen ist dies nicht der Fall

 \rightarrow Im Weiteren nur Betrachtung 4 μ Kanal

Ansatz: Detektorantwort für Myonimpulse folgt einer Gauß-Verteilung

$$T(p,\sigma_p) = \frac{1}{\beta \sigma_p \sqrt{2\pi}} e^{-\frac{(p-\alpha \cdot p_{gen})^2}{2(\beta \sigma_p)^2}}$$

rekonstruierter Myonimpuls p, Myonimpuls auf Generatorebene p_{gen} , Myonimpulsauflösung σ_p , Skalierungsfaktoren α und β

- Um *m*_{4µ}(*p*_µ) und σ_{m_{4µ}}(*p*_µ, σ_p) mit ausreichender Genauigkeit bestimmen zu können müssen Myonenimpulse und Myonimpulsauflösungen skaliert werden
- \rightarrow Eichung der Myonantwort mit Hilfe von $Z \rightarrow \mu^+ \mu^-$ Ereignissen

- Fit mit analytischer Funktion und Massenfehlern pro Ereignis: 123.04^{+1.02}_{-1.02} GeV
- Standard Fitverfahren "MC template fit": 123.25^{+1.02}_{-1.09} GeV
- Standard Fitverfahren "MC template fit" alle Kanäle: $123.5 \pm 0.9(stat) \pm 0.3(syst)$ GeV

In diesem Vortrag wurde gezeigt:

- Detektorantwort für Myonen folgt Gauß-Verteilung
- Ein analytischer Fit mit Massenfehlern pro Ereignis von m_{4µ} kann erfolgreich durchgeführt werden

Öffentliche Ergebnisse für den Kanal $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$ für 4.6 fb⁻¹ (2011) und 13.0 fb⁻¹ (2012):

• Wahrscheinlichkeit, dass Untergrundfluktuation größer oder gleich der beobachteten Daten ist:

 $p_0 = 0.0021\%$ ($\hat{=} \sigma = 4.1$) bei einer Masse von $M_H(min) = 123.5$ GeV

- Higgsmasse bestimmt durch Fit: $M_H = 123.5 \pm 0.9(\text{stat}) \pm 0.3(\text{syst})$ GeV
- Verhältnis von beobachteten zu erwarteten Wechselwirkungsquerschnitt bei M_H : Signalstärke $\mu = 1.3^{+0.5}_{-0.4}$
- \Rightarrow Moriond Ergebnisse mit 20.7 fb⁻¹ für 2012 werden in der DPG gezeigt