Measurement of the production cross section for a c-quark jet in association with a W boson with the ATLAS detector at the LHC

M. Vanadia; supervised by: O. Kortner, H. Kroha

Max-Planck-Institut für Physik

 $5^{\rm th}$ March 2013 - DPG Conference - Dresden

<ロ> (日) (日) (日) (日) (日)

Motivation: s-quark Parton Density Function (PDF)

- *s*-quark PDF known with high uncertainty at low *x*
- ATLAS W and Z cross section results (arXiv:1203.4051) → s-quark proton content enhanced

FIG. 2. Predictions for the ratio $r_s = 0.5(s + \bar{s})/\bar{d}$, at $Q^2 = 1.9 \text{ GeV}^2$, x = 0.023. Points: global fit results using the PDF uncertainties as quoted; bands: this analysis; inner band, experimental uncertainty; outer band, total uncertainty.

The aim is a cross section measurement for W+c final states, which may be used to constrain the s-guark pdf.

- measurement in $W \rightarrow e\nu$ and $W \rightarrow \mu\nu$ channels
- \bullet cross section measured exclusively in 1-jet bin (80% sg) and 2-jets bin (50% sg, 20% gg)
- the strategy is to select final states using $c \rightarrow \mu + X$ decays
- the direct outcome is a $\sigma^{\rm fid}_{{
 m Wc}(c o\mu)} imes {
 m BR}(W o\ell
 u)$ cross section measurement
- this is extrapolated to a $\sigma_{
 m Wc}^{
 m fid} imes {
 m BR}(W o \ell
 u)$ cross section relying on simulations

W boson selection

- Isolated e or μ : p_{T} >25(20) GeV, $|\eta|$ <2.5(2.4)
- High missing transverse energy: $E_T^{miss} > 25(20)$ GeV
- High transverse mass: $m_T^W > 40(60)$ GeV

Black numbers are for the electron channel, blue numbers for the muon channel

Jet selection

- 1 or 2 jets with $p_{\mathrm{T}}{>}25$ GeV, $|\eta|<\!2.5$
- exactly 1 jet with a soft muon inside
 - i.e. tagged by the Soft Muon Tagger (see next slide)

 $q^{Wlepton}q^{soft\ muon} > 0 \rightarrow SS\ bin;\ q^{Wlepton}q^{soft\ muon} < 0 \rightarrow OS\ bin.$ Signal is totally asymmetric \rightarrow OS bin only. Backgrounds are mostly symmetric \rightarrow doing OS-SS results in background subtraction.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のQの

The Soft Muon Tagger (SMT)

SMT calibration

- muon reconstruction scale factors evaluated in data:
 - $J/\Psi
 ightarrow \mu\mu$ at low $p_{
 m T}$
 - $Z
 ightarrow \mu \mu$ at high $p_{
 m T}$
- mistag rate calibrated in data in multijet events

- *b*-jets and *c*-jets selected using soft muons from hadron decays
- low BR (10%) but high rejection power vs light-jets
- Light-jets rejection is R \approx 470, mistag rate is $O(10^{-3})$
- In *Wc* events especially useful due to charge anticorrelation

Efficiency measurement in data and simulations in $Z
ightarrow \mu \mu$ events

- $t\bar{t}$, single-top, diboson are small: estimated on MC
- $W + c\overline{c}$ and $W + b\overline{b}$ are symmetric, OS-SS=0, can be neglected
- W + b is Cabibbo supressed
- *Z* + *jets*:
 - small in electron channel, taken from MC
 - relevant in muon channel (because of SMT, with one of the Z muons falling inside one jet), estimated in data
- For W+light-jets and QCD multi-jet, the relevant quantities are the normalization and the OS/SS asymmetry α: these are evaluated on data (techniques similar to the ones described in arXiv:1109.1470)

Estimated background in the muon channel after OS-SS subtraction

Estimated background is at 15% level in the 1 jet bin, 25% in the 2 jets bin

・ロト ・ 同ト ・ ヨト ・ ヨー ・ つへの

Cross section extraction

The extrapolation factors are evaluated on a Wc Alpgen+Pythia MC sample:

 $Wc(c \rightarrow \mu)$ cross section

$$egin{aligned} & F_{\mathrm{Wc}(c
ightarrow \mu)}^{\mathrm{fid}} imes \mathrm{BR}(W
ightarrow \ell
u) &= rac{N_{data}^{OS-SS} - N_{bkg}^{OS-SS}}{U \cdot \int \mathcal{L} dt} \ & U = rac{N_{MC,reco}^{Wc,OS-SS}(\mathrm{analysis\ cuts})}{N_{MC,reut}^{Wc,OS-SS}(\mathrm{fiducial\ cuts})} \end{aligned}$$

• U is the efficiency of the analysis selection on signal in the fiducial phase space

Wc cross section

$$\sigma_{Wc}^{fid} \times BR(W \to \ell\nu) = \frac{N_{data}^{OS-SS} - N_{bkg}^{OS-SS}}{B \cdot U \cdot \int \mathcal{L}dt}$$
$$B = \frac{N_{MC,ruth}^{Wc,OS-SS}(\text{fiducial cuts})}{N_{MC,ruth}^{Wc,OS-SS}(\text{fiducial cuts})}$$

• B is the unfolding factor from $Wc(c \rightarrow \mu)$ to Wc in the fiducial phase space

э

イロン 不得 とうほう 不良 とう

c-hadrons fragmentation and decay

Branching Ratio

- BR of different c-hadrons to muon is reweighted separately for each species to PDG values
- the PDG error is used as systematic

p^* (muon momentum in c-hadron rest frame)

- p^* of the soft muon is reweighted separately for each c-hadron species to EvtGen shape
- The systematic is evaluated as the difference with Pythia

Fragmentation function (p_T^{hadron}/p_T^{jet})

• (large) difference between Herwig and Pythia is used as a systematic uncertainty

Fragmentation fraction (fraction of c-hadron species)

- Central value from HERA paper (arXiv:1112.3757v1, arXiv:1211.1182) used to reweight
- Errors used as systematic uncertainties

BR to muons of different c-hadrons

Fragmentation function in Herwig and Pythia

- Combining 1 and 2 jets bin, data statistics uncertainty is at 2.5% level
- \bullet Uncertainties due to background normalizations are dominated by W+light-jets uncertainty, ${\approx}1.5\%$
- Detector uncertainties are dominated by muon reconstruction and Jet Energy Scale uncertainties, both at $\approx\!3\%$ level
- c-hadron fragmentation and decay uncertainties are relevant, at \approx 3% level
- \bullet Unfolding uncertainty due to PDF description is small, ${\approx}1\%$

・ロト・(型ト・(ヨト・(ヨト)) ヨー うへつ

Predicted cross section with different PDF sets

- The plot shows the Alpgen+Pythia predictions for the Wc cross sections with different PDF sets
- Uncertainty on the ATLASWZ prediction is not shown, it is expected to be at the same level as the CT10nlo one.
- The ratio wrt the central value of the predictions obtained with the ATLAS W/Z results (arXiv:1203.4051) is shown
- The Wc measurement is clearly sensitive to the s-quark PDF
- The final results for the measurement are in preparation

医下颌 医下颌

-

- The analysis is close to final
- The background estimation is complete
- The cross section extraction and the systematic uncertainty evaluation are $\approx \mbox{completed}$
- We're currently working on a ratio W⁺ c̄/W⁻ c measurement and on a measurement differential in the |η| of the W-lepton
- Main open points are the evaluation of a parton level cross section and the usage of the results for *s*-quark PDF constraints

(日) (四) (王) (王) (王)

BACKUP

Toroid Magnets Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker

Subdetectors

- Inner Detector (solenoidal field)
 - Silicon tracker up to $|\eta| < 2.5$

Calorimeters

- EM up to $|\eta| < 3.2$
 - Liquid Argon sampling calorimeter
- Hadronic up to $|\eta| < 4.9$
 - Tile sampling calorimeter
 - Liquid Argon Calorimeter (forward)
- Muon Spectrometer (toroidal field)
 - Tracking up to
 - $|\eta| < 2.7$

イロト 不得 トイヨト イヨト

• Trigger up to $|\eta| < 2.4$

э

Physics process	Datasets ID	Generators	$\sigma \cdot BR (nb)$
$W \rightarrow l\nu + c$	126601-126605	ALPGEN [22]+PYTHIA [23]	
$W \rightarrow l\nu$ +jets	107680-107705	Alpgen [22]+Herwig [24]	
$W \rightarrow l\nu + b\bar{b}$	107280-107283	Alpgen [22]+Herwig [24]	
$W \rightarrow l\nu + c\bar{c}$	107284-107287	Alpgen 22 + Herwig 24	
Total $W \rightarrow l\nu + jets$			10.46 NNLO [25]
$Z \rightarrow ll$ +jets	107650-107675	Alpgen [22]+Herwig [24]	1.07 NNLO [25, 26]
WW	105985	Herwig 24	44.9×10 ⁻³ NLO [27]
WZ	105986	Herwig 24	18.5×10 ⁻³ NLO 27
ZZ	105987	Herwig 24	5.96×10 ⁻³ NLO [27]
tī	105200	MC@NLO 28]+Herwig 24]	90.5×10 ⁻³ approx.NNLO [29]
singletop (t-channel)	117360-117362	AcerMC [30]+Pythia [23]	64.6×10 ⁻³ NNLO [31]
singletop (s-channel)	108343-108345	MC@NLO [28]+Herwig [24]	4.6×10 ⁻³ NNLO 32
singletop (Wt)	108346	MC@NLO 28 +Herwig 24	15.7×10 ⁻³ NNLO [33]

Table 1: Simulated samples used for the analysis.