Suche nach neutralen MSSM-Higgsbosonen im Zerfallskanal $h/A/H \to \mu^+\mu^-$ mit dem ATLAS-Detektor

Sebastian Stern betreut von Sandra Kortner

Max-Planck-Institut für Physik, München

DPG Frühjahrstagung T 46.9 05.03.2013

Max-Planck-Institut für Physik (Wener-Heisenberg-Institut)

 Im minimal supersymmetrischen Standardmodell (MSSM) werden 5 Higgsbosonen vorhergesagt:

 \rightarrow 3 neutrale: h, H (skalar), A (pseudoskalar),

 \rightarrow 2 geladene: H^{\pm} .

• In niedrigster Ordnung bestimmen nur 2 freie Parameter deren Eigenschaften:

 \rightarrow Masse des pseudoskalaren Higgsbosons, m_A .

 \rightarrow Verhältnis der Vakuumerwartungswerte der Higgsfelder, $\tan \beta = \frac{v_u}{v_s}$.

• Strahlungskorrekturen erzeugen Abhängigkeit von vielen MSSM-Parametern.

 \rightarrow MSSM-Higgssuchen bei ATLAS konzentrieren sich auf das $m_h^{\rm max}$ -Szenario

 \rightarrow Alle MSSM Parameter bis auf m_A und $\tan\beta$ so

festgelegt, dass $m_h\,$ maximiert wird, mit $m_h \lesssim 130~{\rm GeV}$

Neutrale MSSM-Higgsbosonen am LHC

An Dysst

Produktion neutraler MSSM-Higgsbosonen am LHC und relevante Zerfallskanäle

Kopplungen an down-artige Fermionen verstärkt, besonders für große $\tan \beta$.

Experimentell zugängliche Zerfallskanäle:

• $h/A/H \rightarrow \tau^+ \tau^-$: bietet größte Sensitivität.

 \rightarrow hohes Signal-zu-Untergrundverhältnis, limitierte Massenauflösung.

- $h/A/H \rightarrow \mu^+\mu^-$: bietet beste Massenauflösung.
 - ightarrow vollständige Rekonstruktion des Endzustands und präzise Myonrekonstruktion,
 - \rightarrow sehr kleines Signal-zu-Untergrundverhältnis.

Neutrale MSSM-Higgsbosonen am LHC

Produktion neutraler MSSM-Higgsbosonen am LHC und relevante Zerfallskanäle

Kopplungen an down-artige Fermionen verstärkt, besonders für große $\tan \beta$.

• $h/A/H \rightarrow \tau^+ \tau^-$: bietet größte Sensitivität.

 \rightarrow hohes Signal-zu-Untergrundverhältnis, limitierte Massenauflösung.

• $h/A/H \rightarrow \mu^+\mu^-$: bietet beste Massenauflösung.

ightarrow vollständige Rekonstruktion des Endzustands und präzise Myonrekonstruktion,

 \rightarrow sehr kleines Signal-zu-Untergrundverhältnis.

Suche nach dem $h/A/H \rightarrow \mu^+\mu^-$ -Zerfall

• Signalsignatur:

- \rightarrow Zwei unterschiedlich geladene, isolierte Myonen vom Primärvertex.
- \rightarrow Kleiner fehlender Transversalimpuls.

Untergrundprozesse:

 \rightarrow Dominanter Untergrund: Z/γ^* -Produktion mit Jets.

Kann stark unterdrückt werden durch Selektion eines b-Jets.

- \rightarrow $t\bar{t}$ und W^+W^- -Produktion mit zwei Myonen im Endzustand.
- \rightarrow Falsch identifizierte Ereignisse aus $b\bar{b}$ und W + Jet-Produktion.
- Ereignissselektion: in zwei komplementären Endzuständen.
 - $\rightarrow \mu^+ \mu^-$ -Paare mit mindestens einem b-Jet: b-tagged Sample
 - $\rightarrow \mu^+ \mu^-$ -Paare mit keinem *b*-Jet: *b*-vetoed Sample

b-tagged Sample

Events / 5 GeV 10⁶ 10⁶ 108 μ+μ, b-vetoed sample ATLAS Data 2011 =150 GeV. tan 8=40 JHEP 02 (2013) Other electroweak 104 Multi-iet Top W Bkg. uncertainty 10³ = 4.8 fb 10^{2} 10 10-1 100 150 200 250 300 350 400 450 500 muu [GeV]

b-vetoed Sample

Signal- und Untergrundparametrisierung

- Erwartetes $h/A/H \rightarrow \mu^+\mu^-$ Signal besteht aus drei Resonanzen: h, A and H.
 - ightarrow 2 3 Resonanzen entartet (gleiche Massen): Signalbeiträge addieren sich.
 - ightarrow Wegen guter Massenauflösung können nicht-entartete Resonanzen getrennt beobachtet werden.
 - \rightarrow h, A und H Resonanzen werden analytisch parametrisiert.
- Datenbasierte Untergrundbestimmung zur Reduzierung systematischer Unsicherheiten:
 - \rightarrow Sideband-Fits an die $\mu^+\mu^-$ invariante Massenverteilung.
 - ightarrow Suche nach kleinen Peaks in der kontinuierlich-fallenden Untergrundverteilung.
- Kein signifikanter Überschuss an Ereignissen in den Daten sichtbar.

b-vetoed Sample

Ausschlussgrenzen

- Ausschlussgrenzen auf dem 95 % Vertrauensniveau (CL) wurden berechnet.
- Berücksichtigte systematische Unsicherheiten:
 - ightarrow Luminositäts-, Theorie- und Detektorunsicherheiten betreffen Signalerwartung.
 - ightarrow Unsicherheiten von Form und Normierung der Signal- und Untergrundparametrisierung.
- Auschlussgrenzen wurden auf zwei Arten interpretiert:
 - \rightarrow in der m_A -tan β Ebene fúr die h/A/H Signalvorhersage im m_h^{max} -Szenario.
 - \rightarrow auf $\sigma_{\phi} \times \mathcal{B}(\phi \rightarrow \mu^{+}\mu^{-})$ eines allgemeinen Skalars ϕ als einzelne Resonanz.

Kombinierte Ergebnisse

- $\bullet~$ Gezeigt wurde die Suche nach neutralen MSSM-Higgsbosonen im Zerfallskanal $h/A/H \to \mu^+\mu^-.$
 - \rightarrow Analyseergebnisse mit Proton-Proton-Kollisionsdaten von 2011 mit 4.8 fb⁻¹.
 - ightarrow Signal- und Untergrundverteilungen wurden mit analytischen Funktion parametrisiert.
- Kein signifikanter Überschuss an Daten im Vergleich zu erwarteten Standardmodell-Prozessen.
- Ausschlussgrenzen wurden ermittelt für:
 - $\rightarrow m_h^{\max}$ -Szenario in der m_A -tan β Ebene
 - \rightarrow und für $\sigma imes \mathcal{B}(\phi
 ightarrow \mu^+ \mu^-)$ eines skalaren Bosons.
- Ergebnisse in diesem Kanal wurden kombiniert mit dem $h/A/H \rightarrow \tau^+ \tau^-$ Kanal.

Backup Slides

Signal-Parametrisierung

• $h/A/H \rightarrow \mu^+\mu^-$ signal is composed of three single resonances: h, A and H.

 \rightarrow 2 - 3 resonances degenerated \Rightarrow Same masses, signal contributions are summed.

- \rightarrow Due to good experimental mass resolution non-degenerated resonances can be separated.
- Properties of h, A and H depend on m_A and $\tan \beta$
 - \rightarrow Scanned m_A points shouldn't be separated by more than $\mu^+\mu^-$ mass resolution.
 - $\rightarrow \mu^+ \mu^-$ mass resolution sensitive to natural width of A and H which is increasing with $\tan \beta$
- \Rightarrow Complex signal model and high mass resolution:
 - \rightarrow Require tests of many signal points in m_{A} -tan β plane.
- Separate h, A and H mass distributions parametrized.

 $f_{\mathsf{Signal}}\left(x|N_{\mathsf{S}},m,\Gamma,\sigma,c,\varsigma\right) = N_{\mathsf{S}}\left[\mathcal{F}_{\mathsf{Breit-Wigner}}\left(x|m,\Gamma\right) \otimes \mathcal{F}_{\mathsf{Gauss}}\left(x|0,\sigma\right) + c \cdot \mathcal{F}_{\mathsf{Landau}}\left(-x|m,\varsigma\right)\right]$ \rightarrow Dependence of fit parameters on m_A and $\tan \beta$ evaluated with few simulated $A \rightarrow \mu^+ \mu^-$ samples.

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2012-11/

b-quark associated production

300

$$\begin{split} &f_{\mathsf{Signal}}\left(x|N_{\mathsf{S}},m,\Gamma,\sigma,c,\varsigma\right) = \\ &N_{\mathsf{S}}\left[\frac{1}{\left[x^2 - m^2\right]^2 + m^2\Gamma^2} \otimes \mathcal{F}_{\mathsf{G}}\left(x|0,\sigma\right) + c\cdot\mathcal{F}_{\mathsf{L}}\left(-x|m,\varsigma\right)\right] \end{split}$$

 $f_{\mathsf{Background}}\left(x|N_{\mathsf{B}}, A, B, m_{Z}, \Gamma_{Z}, \sigma\right) = N_{\mathsf{B}} \cdot \left[f_{Z}\left(x|A, B, m_{Z}, \Gamma_{Z}\right) \otimes \mathcal{F}_{\mathsf{G}}\left(x|0, \sigma\right)\right]$

$$f_Z(x, A, B, m_Z, \Gamma_Z) = A \frac{1}{x^2} + B \frac{x^2 - m_Z^2}{\left(x^2 - m_Z^2\right)^2 + m_Z^2 \Gamma_Z^2} + \frac{x^2}{\left(x^2 - m_Z^2\right)^2 + m_Z^2 \Gamma_Z^2}$$

- $\mathcal{F}_{\mathsf{G}}(x|0,\sigma)$: Gaussian distribution of variable x with mean 0 and variance σ^2 .
- $\mathcal{F}_{\mathsf{L}}(-x|m,\varsigma)$: Landau distribution with left-hand side tail of variable x with mean m and scale parameter ς .

	b-tagged sample	b-vetoed sample
Mass Point	$m_A = 150 \text{ GeV}$	
Fit Range	110-200 GeV	
Background	980 ± 50	35900 ± 600
Signal $m_A = 150 \mathrm{GeV}, \tan\beta = 40$		
$b(b)(h/A/H \rightarrow \mu^+\mu^-)$	$28 \pm 2 {}^{+3}_{-4}$	$271 \pm 22 {}^{+31}_{-40}$
$gg \to h/A/H \to \mu^+\mu^-$	$2.3 \pm 0.3 \ {\pm}0.4$	$141 \pm 10 \ ^{+22}_{-20}$
Data	985	36044
ULED 00 (0010) 005		

JHEP 02 (2013) 095