Suche nach dem SM-Higgs-Boson in Vektor-Boson-Fusion im $H \rightarrow W^+W^- \rightarrow \ell^+ \nu \ell^- \bar{\nu}$ -Zerfall mit dem ATLAS-Detektor für

Johanna Bronner, betreut von Sandra Kortner

Max-Planck-Institut für Physik, München

DPG-Frühjahrstagung, 2013

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Produktion des Standardmodell-Higgs-Boson am LHC

Gluon-Fusion (ggF):

• σ_{ggF} ist **dominanter** Wirkungsquerschnitt am LHC.

Vektor-Boson-Fusion (VBF):

- $\sigma_{VBF} \approx 1/10 \cdot \sigma_{ggF}$
- Klare Signatur mit zwei harten Jets im Vorwärtsbereich.

Entdeckung eines neuen skalaren Bosons mit einer Masse $m_H \approx 125 \,\text{GeV}$ durch ATLAS und CMS.

 \rightarrow Direkte Messung individueller Produktionsmechanismen steht noch aus.

Die Signatur des $H(+2j) \rightarrow WW \rightarrow \ell \nu \ell \nu$ -Zerfalls

Die VBF-Topologie

- Zwei harte Jets in entgegengesetzter Hemisphäre im Vorwärtsbereich des Detektors.
- Higgs-Aktivität nur im zentralen Bereich des Detektors.

Der dibosonische Higgs-Zerfall

- Große Zerfallsbreite für großen Massenbereich.
- Klare Signatur mit:
 - Zwei Leptonen (e, µ): mit hohem Impuls und wenig Aktivität um das Lepton herum (isoliert).
 - Zwei Neutrinos

 \rightarrow fehlende transversale Energie E_T^{miss} .

- Kleiner Öffnungswinkel zwischen den Leptonen
- Transversale Higgsmasse m_T aus Lepton-E_T^{miss}-System.

Die Analyse wird unterteilt in Dileptonendzustände und Jetmultiplizitätsendzustände:

- "Same Flavor": $e\nu e\nu + \mu\nu\mu\nu$
- "Different Flavor" $\mu\nu e\nu + e\nu\mu\nu$

• 0-Jet, 1-Jet und \geq **2-Jet**.

≥2-Jet Analyse auf VBF Produktionsnachweis ausgerichtet und Fokus des Vortrags!

Die Untergründe der $H(+2j) \rightarrow WW \rightarrow \ell \nu \ell \nu$ Analyse

Die Vorselektion

- 2 gegensätzlich geladene Leptonen mit transversalem Impuls von 15 GeV bzw. 25 GeV
- Z-Veto (30 GeV Fenster) für "Same Flavor"
- Hohe fehlende transversale Energie (E_T^{miss})
- mindestens 2 harte Jets (p_T > 25 (30) GeV im zentrale (vorwärts) Bereich)

Jetmultiplizität nach der Vorselektion: m_T nach der Vorselektion: Events / 10 GeV £60000 444 SM (svs ⊕ stat) ATLAS Work in Progress 10 WZ/ZZ/Wh WZ/ZZ/Wy \s = 8 TeV, ∫ Ldt = 20.7 fb⁻¹ Single Top 50000 Z+jets 105 W+iets Single Top $H \rightarrow WW^{(*)} \rightarrow IvIv + \ge 2 jets$ vbf+vh (×100 104 40000F W+iets aaf vbf+vh (×100) 10 30000F 102 ATLAS Work in Progress-20000 \s = 8 TeV, ∫ Ldt = 20.7 fb⁻¹ 10000 $H \rightarrow WW^{(*)} \rightarrow lvlv + \ge 2$ jets 10-1 10 150 200 300 m_T [GeV] Ziel: Nachweis der VBF-Higgs-Produktion im WW-Endzustand! \Rightarrow SM-Higgs-Boson produziert durch ggF ist Untergrund!

Johanna Bronner (Max-Planck-Institut für Physik)

Die wichtigsten Untergründe:

- Top: $t\bar{t}$ (\blacksquare) und single Top (\blacksquare)
- Z+jets (
- Diboson: WW (\blacksquare) und WZ/ZZ/W $\gamma(\blacksquare$)

• W+jets (

• ggF, $m_H = 125$ GeV (\blacksquare)

Signal: VBF, $m_H = 125$ GeV (hier \times 100)

Die VBF-Topologie

Man fordert:

- Veto auf Jets aus b-Quarks (b-Jet) → Reduktion des Top-Quark-Untergrunds.
- Keine Jet-Aktivität zwischen den 2 höchstenergetischsten Jets (VBF-Jets) \rightarrow zentrales Jet Veto.
- Higgs-Zerfallsprodukte (Leptonen) zwischen den VBF-Jets.
- Hohe invariante Dijet-Masse (m_{jj}).
- Großer Rapididätsöffnungswinkel (ΔY_{ij}) zwischen den VBF-Jets.

Die Higgszerfallstopologie

Dilepton Öffnungswinkel: $\Delta \phi < 2.8$

- Fit in 4 Bins der finalen m_T -Verteilung
- Ähnliche Form der m_T-Verteilung von Untergrund und Signal!
 - \Rightarrow Untergrundbeitrag muss sehr gut verstanden werden.

⇒ Bestimmung des Untergrundes aus Daten-Kontrollregionen!

Abschätzung der Untergründe

Hauptuntergründe abhängig vom Lepton-Endzustand

- ⇒ "Different Flavor"-Endzustand deutlich höhere Sensitivität.
- \Rightarrow "Same Flavor"-Endzustand zusätzlichen $Z \rightarrow ee$ und $Z \rightarrow \mu\mu$ Untergrund

Handhabung der Untergundkorrekturen im Überblick:

- Top-Quark- und Z-Untergrund: abgeschätzt und korrigiert in Kontrollregionen aus Daten.
- Dibosonischer Untergrund VV+2jet (WW,WZ,ZZ,W γ): keine Kontrollregion (starke Verunreinigung durch Top-Quark-Prozesse)
 - **b** Diboson Prozesse aus Simulation \rightarrow 40% systematische Unsicherheit auf die VV+2jet-Vorhersage.

Top-Quark-Untergrundbestimmung und Modellierung

• Top-Quark-Zerfall: $t \rightarrow Wb$

 \Rightarrow 2 b-Jets in $t\bar{t}$ -Ereignissen erwartet!

- Defnition der Top-Quark-Kontrollregion:
 - Invertierung des B-Jet-vetos.
 - Alle Schnitte außer m_{ℓℓ}, Δφ(ℓℓ), m_T werden angewendet.

- → Korrekturfaktor von 0.6 auf die Erwartung des Top-Quark-Untergrunds!
- Ursache der großen Normierungskorrektur: Modellierung der VBF-Variablen (*m_{jj}*, ΔY_{jj}, zentrales Jet Veto...)

Analyse sensitiv auf NLO Modellierungen.

- MC@NLO ist nomineller *tt*-Generator.
- Vergleich mit anderen Generatoren. \Rightarrow

Vergleich der Top-Quark-Modellierung mit verschiedenen Generatoren

- Schlechte Modellierung der VBF-Variablen in der Top-Quark-Kontrollregion durch MC@NLO → Große Normierungskorrektur nach VBF-Schnitten notwendig.
- Vorraussetzung zur Anwendung der Korrektur in der Signalregion:
 - Differenz zwischen Daten und Simulation sollte gleich gross sein in Signal- und Kontrollregion.
 - Differnez in Signalregion allerdings nicht messbar!
 - \Rightarrow Vergleich mit Generatoren die Dijet-Kinematiken besser/anders modellieren.

- Unterschiede der Generatoren in Kontrollregion: ≈ 50%
 ⇒ Große MC@NLO Normierungskorrektur von 0.6 nachvollziehbar.
- Bestimmung der Normierungskorrektur f
 ür jeden Generator separat.
- Unterschied der Generatoren nach Extrapolation in die Signalregion: 15% (Alpgen/Powheg/MC@NLO)

 \Rightarrow 15% theoretische syst. Unsicherheit auf den Top-Quark-Untergrund in der Signalregion.

$Z \rightarrow ee/\mu\mu\text{-Untergrundbestimmung}$ im "Same Flavor" Endzustand

• $Z \rightarrow ee$ und $Z \rightarrow \mu\mu$ keine wahre E_T^{miss} !

 \rightarrow Hohe E_T^{miss} durch limitierte Detektorauflösung ("fake"- E_T^{miss}).

- \rightarrow Anspruchsvoll für MC-Simulation!
- Schlechte Modellierung von "fake"-E^{miss} ⇒ Datenbasierte Korrektur notwendig!

 Abschätzung der E^{miss}-Korrektur im Z-Massenfenster und Extrapolation in den m_{ℓℓ}-Signalbereich durch:

$$\mathsf{A}_{\mathsf{Daten-Vorhersage}} = \mathsf{B}_{\mathsf{Daten}} \cdot \frac{\mathsf{C}_{\mathsf{Daten}}}{\mathsf{D}_{\mathsf{Daten}}}$$

 $A_{\text{Daten-Vorhersage}}/A_{\text{MC-Vorhersage}} = 0.81 \pm 0.06 \text{ (stat.)}$

Johanna Bronner (Max-Planck-Institut für Physik)

- Die ATLAS VBF Analyse im $H \rightarrow WW$ Endzustand wurde vorgestellt.
- Fokus der Analyse: Unabhängiger Nachweis der VBF-Produktion im WW-Endzustand.
- Die wichtigsten Untergründe können durch Kontrollregionen in Daten abgeschätzt und korrigiert werden.
- Das Ergebniss mit 20 fb⁻¹ darf mit Spannung erwartet werden.