Search for the SM Higgs boson in the fully hadronic di- τ final state with the ATLAS Experiment at LHC [ATLAS-CONF-2012-160]

Daniele Zanzi, supervised by Sandra Kortner (MPI, München)

DPG Frühjahrstagung - Dresden, 04/03-08/03 2013

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

 $H \rightarrow \tau_{HAD} \nu \tau_{HAD} \nu$

THE MEASUREMENT OF THE FERMIONIC COUPLING OF THE NEWLY OBSERVED **RESONANCE IS CRUCIAL FOR CLAIMING THE** DISCOVERY OF THE HIGGS BOSON

Main features of this search:

- τ_{had} = visible products of the τ hadronic decay 1.
- 2. cut-based selection optimized for gluon fusion (ggF) and vector boson fusion (VBF)
- 3. high BR($H \rightarrow \tau \tau \rightarrow hh$)
- 4. $Z \rightarrow \tau \tau$ irreducible bkg
- 5. multi-jet events biggest but reducible bkg (2 mis-id'ed jets)

Critical points:

- double τ_{had} trigger 1.
- 2. multi-jets modelling

At trigger level:

- 1. Poor discrimination between τ_{had} and light-jets from quarks/gluon
- 2. High p_T thresholds to limit trigger rate
- 3. Trigger p_T drive the offline p_T thresholds
- 4. τ -id to improve signal acceptance and light-jets rejection

	Leading $ au_{had} \mathbf{p}_{T}$	Sub-leading $ au_{had} p_{T}$
L1 Trigger	15	11
EF Trigger	29	20
Offline	40	25

Single-tau trigger eff wrt offline selection

2-tau trigger \approx (single-tau trigger)²

EVENT SELECTION

1. Preselection: *τ*-pair selection

- No muons or electrons
- 2 id'ed taus with $p_T>40,25$ GeV, 0.8< $\Delta R(\tau,\tau)$ <2.8, $\Delta \eta(\tau,\tau)$ <1.5
- 2. VBF: optimized for VBF production mode
 - $\geq 2 \text{ jets with } p_T > 50,30 \text{ GeV}, \eta_{j1} \times \eta_{j2} < 0, \Delta \eta_{jj} > 2.6, m_{jj} > 350 \text{ GeV}$
 - E_T^{miss} > 20 GeV, pointing in between the taus
- **3. Boosted**: optimized for the gluon fusion production with one boosting jet
 - ≥ 1 jet with $p_T > 70$ GeV
 - 0.8<ΔR(τ,τ)<1.9
 - E_T^{miss} > 20 GeV, pointing in between the taus

BACKGROUND ESTIMATION -

	$Z \rightarrow \tau \tau$	Multi-jets	Others* (W→τν+j, top)
Yield	Fit of the 2D track multiplicity distribution of the 2 selected tau		Monte Carlo prediction
Shape	Embedded $Z \rightarrow \mu \mu$ events	Opposite- Signed (OS) events where taus fail the <i>τ</i> -id	
			* Very little yield

= Data driven methods

- = τ -id + trigger efficiency measured in data (tag-and-probe with Z and W)
- = τ -mis-id + trigger efficiency measured in data (tag-and-probe with W)

5. Multi-jets fitted at the end of the event selection

0

(1,1) (1,2) (1,3) (1,4) (2,1) (2,2) (2,3) (2,4) (3,1) (3,2) (3,3) (3,4) (4,1) (4,2) (4,3) (4,4)

Z+JETS MODELING

MULTI-JETS MODELING

- 1. Very difficult to model events with 2 misid'ed jets (no CR available in the analysis)
- 2. OS(f,f) events: OS events with taus faling τ -id
- 3. Modeling events with taus passing τ -id with OS(f,f) requires a reweighting because the mis-id eff depends on the kinematics
- 4. Weight = $[\Delta R(\tau_1, \tau_2), p_{T,\tau_1}, p_{T,\tau_2}, \eta_{\tau_1}, \eta_{\tau_2}] \times [E_T^{\text{miss}}, #\text{vertices}]$

Mass plots of events with ≥1 jets

EXCLUSION LIMITS

- 1. Out of the 3 $\tau\tau$ final states, the $\tau_{had}\tau_{had}$ is the second most sensitive
- 2. For the 125 GeV mass point, the observed(expected) 95% CL upper limits are:

 $H \rightarrow \tau_{had} \tau_{had}$: 2.5(2.3) $H \rightarrow \tau \tau$: 1.9(1.2)

- 3. The observed(expected) significance for deviations from the background-only hypothesis at the 125 GeV is $1.1(1.7)\sigma$
- 4. The fitted signal strength is 0.7±0.7 times the prediction for the SM Higgs boson with the mass of 125 GeV

- 1. The $\tau_{had}\tau_{had}$ is crucial for the sensitivity of the combined $H \rightarrow \tau \tau$ search
- 2. No significant excess observed, but the sensitivity is still not enough to probe the Higgs coupling to fermions
- 3. 7 fb⁻¹ of 2012 data still to be analyzed

BACKUP SLIDES

Daniele Zanzi (MPI München)

05/03/13

EXCLUSION LIMITS

