DPG-Frühjahrstagung 04-08 March 2013 Dresden

Germanium Detectors and Natural Radioactivity in Food

Lucia Garbini Max-Planck-Institut für Physik GeDet collaboration

O<u>utline</u>

→ Introduction

- Natural Radioactivity in Food

\rightarrow Experimental setup

- Background Reduction
- Detector Calibration

\rightarrow Data analysis

- Food Spectra
- Potassium Content

→ Conclusions

Introduction: natural radioactivity in food

- **Potassium** plays a central role in many physiological processes
- Every kind of food contains Potassium

What is the potassium content of different food sample?

- Potassium has a **radioactive isotope**: ⁴⁰K (i.a. 0.012%)

Use a Germanium Detector

Counting Gammas from the 1460 peak

Experimental Setup: Background reduction

- 100 g of strawberry => 153 mg of K => 0.018 mg of $^{40}K \rightarrow WEAK$ SOURCE $\mathcal{I}_{\mathcal{A}_{f}, \mathcal{A}_{f} \geq \frac{1}{2}}$

- from this weak source in 1 hour \rightarrow **20 counts**
- from the bkg radiation in 1 hour $\rightarrow~1000~counts$

Natural radioactive background: reduction due to lead castle

Calibrate the **detector response** with a **WELL KNOWN** quantity of $\mathcal{R}^{\Delta_p,\Delta_q \ge \frac{1}{2}}$

Known mass of K : Spectrum_A = unknown mass of K : Spectrum_B

Define the experimental settings:

1) position of the plastic container:

 $a^g \equiv$

- vertical
- horizontal

2) relative distance between source and detector

MAXIMIZING THE GEOMETRICAL ACCEPTANCE, af

IN measured

Where:

 $N_{measured}$ $N_{emitted}$

are obtained directly f**rom the measured spectrum** tted can be **calculated from the activity** of the sample

Experimental Setup: Detector Calibration (II)

Potassium Chloride spectra in horizontal and vertical position counts/keV h kg 10⁴ **Container Position** Horizontal Vertical 10³ $f^{Peak+\delta}$ $s_V(E)$ $a_V^g = \frac{J_0}{}$ = 12 % N_{exp} $Peak+\delta$ 10² $s_H(E)$ a_H^g N_{exp} 10 1 10⁻¹ 500 1000 1500 2000 2500 3000 Energy [keV]

Germanium Detectors and Natural Radioactivity in Food

Data Analysis: Food Spectra

ONCE CALIBRATED...

Known mass of K : Spectrum_{KCI} = unknown mass of K : Spectrum_F

To be compared to the expected Potassium content USDA National Nutrient Database for Std. Ref., Release 17

Data Analysis: Potassium Content

Comparison between expected and measured percentage Potassium content $\pi_{\Delta_p \Delta_q > 1}$

potassium content in dark chocolate bars not proportional to cocoa percentage
deviation from expected values

- different origin, production methods of food samples

To summarize...

- built a shield with high bkg reduction power
- good performances of the detector with weak sources like strawberries
- measured **Potassium content** of **13** different food samples

- **Potassium** content in chocolate with different given cacao percentages is not proportional to the percentage

Outlook:

- further measurements will be done:
 - to refine the method
 - to check chocolates
 - to check reproducibility for fruit

Suggestion: If you have cramps try raisins!!

Backup Slides

Activity = number of decays per second

- from the **exponential decay law**: if we have initially N₀ radioisotopes $D(t) = N_0 - N(t) = N_0 \left(1 - e^{-\frac{t}{\tau}}\right)$

is the number of decays after a time t

- if we use the half life $t_{_{1/2}}$ and expand in **Taylor series** we can obtain

$$e^{-rac{t}{ au}} = 1 - rac{t}{ au} = 1 - rac{t \cdot ln2}{t_{rac{1}{2}}}$$

- if we have a certain mass of a radioactive isotope m

$$A = \frac{D(t)}{t} = \left(\frac{m_I}{m_I^A} \cdot N_A\right) \cdot \frac{\ln 2}{t_{\frac{1}{2}}}$$

For a Potassium Chloride (KCl) sample :

- of mass $m_{\kappa cl}$
- with a cenrtain amount of impurities i_{tot} we will have:

$$m_{40K} = m_{KCl} \cdot (1 - i_{tot}) \cdot m_K^{KCl} \cdot a_{40K}$$

$$A_{1460} = 141.9 \ Bq$$

Activity = number of decays per second

Directly from the exponential decay law for N₀ radioisotopes:

$$A = \frac{D(t)}{t} = N_0 \cdot \frac{\ln 2}{t_{\frac{1}{2}}}$$

if we have some amount $m_{_{\rm I}}$ of radioisotope it will be:

$$A = \frac{D(t)}{t} = \left(\frac{m_I}{m_I^A} \cdot N_A\right) \cdot \frac{\ln 2}{t_{\frac{1}{2}}}$$

Potassium Chloride calibration salt

- mass of the salt sample
- impurities
- mass of Potassium in KCl
- isotopic abundance for ⁴⁰K
- atomic mass of ⁴⁰K

$$m_{40K} = m_{KCl} \cdot (1 - i_{tot}) \cdot m_K^{KCl} \cdot a_{40K}$$

$$A_{1460} = 141.9 \ Bq$$

- with this experimental setup we can measure also **WEAK SOURCES**!
 - → we can measure the **Potassium content** in different food sample

This are values that you can find in literature... but are they true??

Food	Potassium content in 1 pound [g]
Strawberry	0.76
Sugared almonds	1.27
White chocolate	1.43
kiwi	1.56
Banana	2.18
Hazelnuts	2.5
Dry Prunes	3.4
Raisins	3.74
Pistachios	5.125
Dry Apricots	9.25

Chocolate	Potassium content in 1 pound [g]
Dark Chocolate 50% cacao	3.81
Dark Chocolate 70% cacao	5.334
Dark Chocolate 85% cacao	6.477

We can do it but before...we need to CALIBRATE the detector!

