QCD corrections to Higgs plus jets production with GoSam

Hans van Deurzen

Max-Planck-Institut für Physik Munich, Germany

NLO QCD corrections to the production of Higgs plus two jets at the LHC, e-Print: arXiv:1301.0493, accepted by Physics Letters B

[HvD, Greiner, Luisoni, Mastrolia, Mirabella, Ossola, Peraro, von Soden-Fraunhofen, Tramontano, 2013]

Outline

Motivation

Scattering amplitudes at one-loop

Determining the parametric form of the numerator

Extended rank numerator

Higgs plus two jets

Higgs plus three jets

Summary

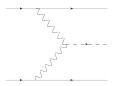
► Boson discovered by Atlas and CMS → Higgs?

► Boson discovered by Atlas and CMS → Higgs?

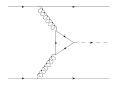
Need to determine properties: spin, CP properties, couplings

► Boson discovered by Atlas and CMS → Higgs?

Need to determine properties: spin, CP properties, couplings

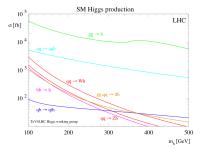


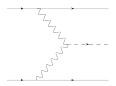
Vector Boson Fusion



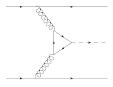
Gluon Fusion via top loop

- ▶ Boson discovered by Atlas and CMS → Higgs?
- Need to determine properties: spin, CP properties, couplings

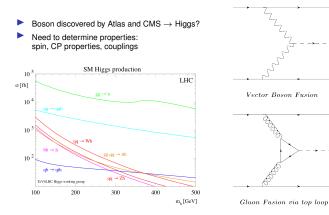




Vector Boson Fusion

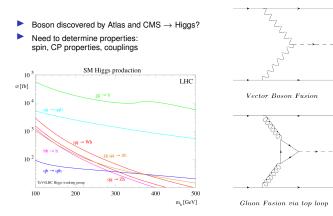


Gluon Fusion via top loop



Leading order too strong dependence on renormalization and factorization scale

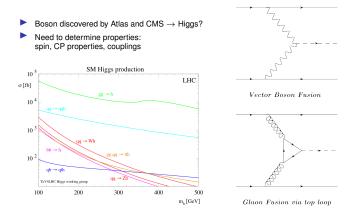
Hans van Deurzen



Leading order too strong dependence on renormalization and factorization scale

Development of more general framework for NLO automation

Hans van Deurzen

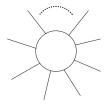


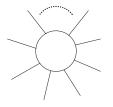
Leading order too strong dependence on renormalization and factorization scale

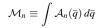
Development of more general framework for NLO automation

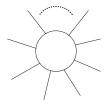
$$\sigma^{NLO} = \int_{m+1} \left[d^{(4)} \sigma^R - d^{(4)} \sigma^A \right] + \int_m \left[d^{(4)} \sigma^B + \int_{loop} d^{(d)} \sigma^V + \int_1 d^{(d)} \sigma^A \right]$$

Hans van Deurzen



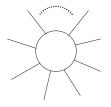






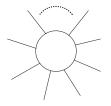
$$\mathcal{M}_n \equiv \int \mathcal{A}_n(\bar{q}) d\bar{q} \equiv \int d^{-2\epsilon} \mu \int d^4q \frac{N(q,\mu^2)}{\bar{D}_0 \dots \bar{D}_{n-1}}$$

Hans van Deurzen



$$\mathcal{M}_n \equiv \int \mathcal{A}_n(\bar{q}) \, d\bar{q} \equiv \int d^{-2\epsilon} \mu \int d^4q \frac{N(q,\mu^2)}{\bar{D}_0 \dots \bar{D}_{n-1}}$$

Decompose:

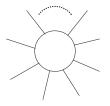


$$\mathcal{M}_n \equiv \int \mathcal{A}_n(\bar{q}) \, d\bar{q} \equiv \int d^{-2\epsilon} \mu \int d^4q \frac{N(q,\mu^2)}{\bar{D}_0 \dots \bar{D}_{n-1}}$$

Decompose:

$$\mathcal{A}_{n}^{\text{one-loop}} = c_{5,0} + c_{4,0} + c_{4,4} + c_{4,4} + c_{3,0} + c_{3,7} + c_{2,0} - c_{4,2} + c_{2,0} + c_{2,0} + c_{2,0} + c_{2,0} + c_{1,0} +$$

Hans van Deurzen



$$\mathcal{M}_n \equiv \int \mathcal{A}_n(\bar{q}) \, d\bar{q} \equiv \int d^{-2\epsilon} \mu \int d^4q \frac{N(q,\mu^2)}{\bar{D}_0 \dots \bar{D}_{n-1}}$$

Decompose:

$$A_n^{\text{one-loop}} = c_{5,0} + c_{4,0} + c_{4,4} + c_{4,4} + c_{3,0} + c_{3,7} + c_{2,0} - c_{2,0} + c_{2,0} + c_{1,0} + c_{1$$

$$\int d^{-2\epsilon} \mu^2 d^4 q \mathcal{A}_n(q) = \int d\bar{q} \frac{c_{5,0}}{D_0 D_1 D_2 D_3 D_4} + \int d\bar{q} \frac{c_{4,0} + c_{4,4} \mu^4}{D_0 D_1 D_2 D_3} + \int d\bar{q} \frac{c_{3,0} + c_{3,7} \mu^2}{D_0 D_1 D_2} + \int d\bar{q} \frac{c_{2,0} + c_{2,9} \mu^2}{D_0 D_1} + \int d\bar{q} \frac{c_{1,0}}{D_0}$$

• computation of $\mathcal{M}_n \rightarrow$ computation of coefficients

Hans van Deurzen

$$\mathcal{A}_{n}^{\text{one-loop}} = c_{5,0} + c_{4,0} + c_{4,4} + c_{3,0} + c_{3,7} + c_{3,7} + c_{2,0} + c_{2,9} + c_{2,9} + c_{1,0}$$

$$\int d^{-2\epsilon} \mu^{2} d^{4} q \mathcal{A}_{n}(q) = \int d\bar{q} \frac{c_{5,0}}{D_{0} D_{1} D_{2} D_{3} D_{4}} + \int d\bar{q} \frac{c_{4,0} + c_{4,4} \mu^{4}}{D_{0} D_{1} D_{2} D_{3}} + \int d\bar{q} \frac{c_{3,0} + c_{3,7} \mu^{2}}{D_{0} D_{1} D_{2}} + \int d\bar{q} \frac{c_{2,0} + c_{2,9} \mu^{2}}{D_{0} D_{1}} + \int d\bar{q} \frac{c_{1,0}}{D_{0}}$$

• integral \rightarrow integrand:

$$\begin{aligned} \mathcal{A}_{n}^{\text{one-loop}} &= c_{5,0} & + c_{4,0} & + c_{4,4} & + c_{4,4} & + c_{3,0} & + c_{3,7} & + c_{2,0} - - + c_{2,0} - + c_{1,0} \\ & \int d^{-2\epsilon} \mu^2 d^4 q \mathcal{A}_n(q) = \int d\bar{q} \frac{c_{5,0}}{D_0 D_1 D_2 D_3 D_4} + \int d\bar{q} \frac{c_{4,0} + c_{4,4} \mu^4}{D_0 D_1 D_2 D_3} \\ & + \int d\bar{q} \frac{c_{3,0} + c_{3,7} \mu^2}{D_0 D_1 D_2} + \int d\bar{q} \frac{c_{2,0} + c_{2,9} \mu^2}{D_0 D_1} + \int d\bar{q} \frac{c_{1,0}}{D_0} \end{aligned}$$

► integral → integrand:

$$A_n(q) = \frac{c_{5,0} + f_{01234}(q, \mu^2)}{D_0 D_1 D_2 D_3 D_4} + \frac{c_{4,0} + c_{4,4} \mu^4 + f_{0123}(q, \mu^2)}{D_0 D_1 D_2 D_3} + \frac{c_{3,0} + c_{3,7} \mu^2 + f_{012}(q, \mu^2)}{D_0 D_1 D_2} + \frac{c_{2,0} + c_{2,9} \mu^2 + f_{01}(q, \mu^2)}{D_0 D_1} + \frac{c_{1,0} + f_0(q, \mu^2)}{D_0}$$

Hans van Deurzen

$$\begin{aligned} \mathcal{A}_{n}^{\text{one-loop}} &= c_{5,0} & + c_{4,0} & + c_{4,4} & + c_{4,4} & + c_{3,0} & + c_{3,7} & + c_{2,0} & - + c_{2,0} & - + c_{2,0} & - + c_{1,0} & - \\ & \int d^{-2\epsilon} \mu^2 d^4 q \mathcal{A}_n(q) = \int d\bar{q} \frac{c_{5,0}}{D_0 D_1 D_2 D_3 D_4} + \int d\bar{q} \frac{c_{4,0} + c_{4,4} \mu^4}{D_0 D_1 D_2 D_3} \\ & + \int d\bar{q} \frac{c_{3,0} + c_{3,7} \mu^2}{D_0 D_1 D_2} + \int d\bar{q} \frac{c_{2,0} + c_{2,9} \mu^2}{D_0 D_1} + \int d\bar{q} \frac{c_{1,0}}{D_0} \end{aligned}$$

► integral → integrand:

$$A_n(q) = \frac{c_{5,0} + f_{01234}(q, \mu^2)}{D_0 D_1 D_2 D_3 D_4} + \frac{c_{4,0} + c_{4,4} \mu^4 + f_{0123}(q, \mu^2)}{D_0 D_1 D_2 D_3} + \frac{c_{3,0} + c_{3,7} \mu^2 + f_{012}(q, \mu^2)}{D_0 D_1 D_2} + \frac{c_{2,0} + c_{2,9} \mu^2 + f_{01}(q, \mu^2)}{D_0 D_1} + \frac{c_{1,0} + f_0(q, \mu^2)}{D_0}$$

$$\int d^{-2\epsilon} \mu^2 \int d^4 q \quad \frac{f_{ij\dots}(q,\mu^2)}{D_i D_j\dots} = 0$$

Hans van Deurzen

$$\begin{aligned} \mathcal{A}_{n}^{\text{one-loop}} &= c_{5,0} & + c_{4,0} & + c_{4,4} & + c_{4,4} & + c_{3,0} & + c_{3,7} & + c_{2,0} & - + c_{2,0} & - + c_{2,0} & - + c_{1,0} & - \\ & \int d^{-2\epsilon} \mu^2 d^4 q \mathcal{A}_n(q) = \int d\bar{q} \frac{c_{5,0}}{D_0 D_1 D_2 D_3 D_4} + \int d\bar{q} \frac{c_{4,0} + c_{4,4} \mu^4}{D_0 D_1 D_2 D_3} \\ & + \int d\bar{q} \frac{c_{3,0} + c_{3,7} \mu^2}{D_0 D_1 D_2} + \int d\bar{q} \frac{c_{2,0} + c_{2,9} \mu^2}{D_0 D_1} + \int d\bar{q} \frac{c_{1,0}}{D_0} \end{aligned}$$

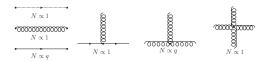
► integral → integrand:

$$A_n(q) = \frac{c_{5,0} + f_{01234}(q, \mu^2)}{D_0 D_1 D_2 D_3 D_4} + \frac{c_{4,0} + c_{4,4} \mu^4 + f_{0123}(q, \mu^2)}{D_0 D_1 D_2 D_3} + \frac{c_{3,0} + c_{3,7} \mu^2 + f_{012}(q, \mu^2)}{D_0 D_1 D_2} + \frac{c_{2,0} + c_{2,9} \mu^2 + f_{01}(q, \mu^2)}{D_0 D_1} + \frac{c_{1,0} + f_0(q, \mu^2)}{D_0}$$

$$\int d^{-2\epsilon} \mu^2 \int d^4 q \quad \frac{f_{ij\dots}(q,\mu^2)}{D_i D_j\dots} = 0$$

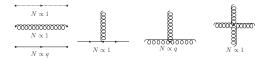
$$\mathcal{A}_n = \sum_{ijkl} \frac{\Delta_{ijkl}(q,\mu^2)}{D_i D_j D_k D_l} + \sum_{ijk} \frac{\Delta_{ijk}(q,\mu^2)}{D_i D_j D_k} + \sum_{ij} \frac{\Delta_{ij}(q,\mu^2)}{D_i D_j} + \sum_i \frac{\Delta_i(q,\mu^2)}{D_i}$$

Hans van Deurzen

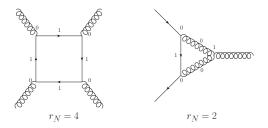


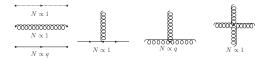


 Only q propagators and 3-gluon-vertices contribute one power of q to numerator

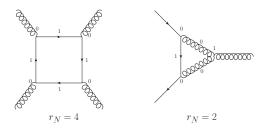


 Only q propagators and 3-gluon-vertices contribute one power of q to numerator



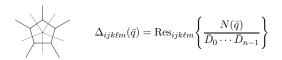


 Only q propagators and 3-gluon-vertices contribute one power of q to numerator



▶ $r_N \leq \#D$

Hans van Deurzen



Hans van Deurzen

$$\Delta_{ijk\ell m}(\bar{q}) = \operatorname{Res}_{ijk\ell m} \left\{ \frac{N(\bar{q})}{\bar{D}_0 \cdots \bar{D}_{n-1}} \right\}$$

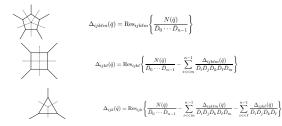
$$\Delta_{ijk\ell}(\bar{q}) = \operatorname{Res}_{ijk\ell} \left\{ \frac{N(\bar{q})}{\bar{D}_0 \cdots \bar{D}_{n-1}} - \sum_{i < < m}^{n-1} \frac{\Delta_{ijk\ell m}(\bar{q})}{\bar{D}_i \bar{D}_j \bar{D}_k \bar{D}_\ell \bar{D}_m} \right\}$$

Hans van Deurzen



$$\Delta_{ijk}(\bar{q}) = \operatorname{Res}_{ijk} \left\{ \frac{N(\bar{q})}{\bar{D}_0 \cdots \bar{D}_{n-1}} - \sum_{i < < m}^{n-1} \frac{\Delta_{ijk\ell m}(\bar{q})}{\bar{D}_i \bar{D}_j \bar{D}_k \bar{D}_\ell} - \sum_{i < \ell}^{n-1} \frac{\Delta_{ijk\ell}(\bar{q})}{\bar{D}_i \bar{D}_j \bar{D}_k \bar{D}_\ell} \right\}$$

Hans van Deurzen



$$\Delta_{ij}(\bar{q}) = \operatorname{Res}_{ij} \left\{ \frac{N(\bar{q})}{\bar{D}_0 \cdots \bar{D}_{n-1}} - \sum_{i < < m}^{n-1} \frac{\Delta_{ijk\ell m}(\bar{q})}{\bar{D}_i \bar{D}_j \bar{D}_k \bar{D}_\ell \bar{D}_m} - \sum_{i < < k}^{n-1} \frac{\Delta_{ijk\ell}(\bar{q})}{\bar{D}_i \bar{D}_j \bar{D}_k \bar{D}_\ell} - \sum_{i < < k}^{n-1} \frac{\Delta_{ijk}(\bar{q})}{\bar{D}_i \bar{D}_j \bar{D}_k} \right\}$$

Hans van Deurzen

$$\Delta_{ijk\ell m}(\vec{q}) = \operatorname{Res}_{ijk\ell m} \left\{ \frac{N(\vec{q})}{D_0 \cdots D_{n-1}} \right\}$$

$$\Delta_{ijk\ell}(\vec{q}) = \operatorname{Res}_{ijk\ell} \left\{ \frac{N(\vec{q})}{D_0 \cdots D_{n-1}} - \sum_{i < m}^{n-1} \frac{\Delta_{ijk\ell m}(\vec{q})}{D_i D_j D_k D_l D_m} \right\}$$

$$\Delta_{ijk}(\vec{q}) = \operatorname{Res}_{ijk} \left\{ \frac{N(\vec{q})}{D_0 \cdots D_{n-1}} - \sum_{i < m}^{n-1} \frac{\Delta_{ijk\ell m}(\vec{q})}{D_i D_j D_k D_l D_m} - \sum_{i < m}^{n-1} \frac{\Delta_{ijk\ell m}(\vec{q})}{D_i D_j D_k D_k D_m} \right\}$$

$$\Delta_{ij}(\vec{q}) = \operatorname{Res}_{ijk} \left\{ \frac{N(\vec{q})}{D_0 \cdots D_{n-1}} - \sum_{i < m}^{n-1} \frac{\Delta_{ijk\ell m}(\vec{q})}{D_i D_j D_k D_k D_m} - \sum_{i < m}^{n-1} \frac{\Delta_{ijk\ell m}(\vec{q})}{D_i D_j D_k D_k D_\ell} \right\}$$

$$\Delta_{ij}(\vec{q}) = \operatorname{Res}_{i} \left\{ \frac{N(\vec{q})}{D_0 \cdots D_{n-1}} - \sum_{i < m}^{n-1} \frac{\Delta_{ijk\ell m}(\vec{q})}{D_i D_j D_k D_k D_\ell} - \sum_{i < \ell}^{n-1} \frac{\Delta_{ijk\ell m}(\vec{q})}{D_i D_j D_k D_\ell D_m} - \sum_{i < \ell}^{n-1} \frac{\Delta_{ijk\ell m}(\vec{q})}{D_i D_j D_k D_\ell D_m} + \sum_{i < \ell}^{n-1} \frac{\Delta_{ijk\ell}(\vec{q})}{D_i D_j D_k} - \sum_{i < \ell}^{n-1} \frac{\Delta_{ijk\ell m}(\vec{q})}{D_i D_j D_k} \right\}$$

Hans van Deurzen

~

$$\begin{split} \Delta_{ijk\ell m}(q,\mu^2) &= c_{5,0}^{(ijk\ell m)} \ \mu^2 \ , \\ \Delta_{ijk\ell}(q,\mu^2) &= \Delta_{ijk\ell}^R(q,\mu^2) + c_{4,0}^{(ijk\ell)} + c_{4,2}^{(ijk\ell)} \mu^2 + c_{4,4}^{(ijk\ell)} \mu^4 \ , \\ \Delta_{ijk}(q,\mu^2) &= \Delta_{ijk}^R(q,\mu^2) + c_{3,0}^{(ijk)} + c_{3,7}^{(ijk)} \mu^2 \ , \\ \Delta_{ij}(q,\mu^2) &= \Delta_{ij}^R(q,\mu^2) + c_{2,0}^{(ij)} + c_{2,9}^{(ij)} \mu^2 \ , \\ \Delta_{i}(q,\mu^2) &= c_{1,0}^{(i)} + c_{1,1}^{(i)}((q+p_i) \cdot e_1) + c_{1,2}^{(i)}((q+p_i) \cdot e_2) \\ &\quad + c_{1,3}^{(i)}((q+p_i) \cdot e_3) + c_{1,4}^{(i)}((q+p_i) \cdot e_4) \ . \end{split}$$

$$\begin{split} \Delta^R_{ijk\ell}(q,\mu^2) &= \left(c^{(ijk\ell)}_{4,1} + c^{(ijk\ell)}_{4,3} \ \mu^2\right)(q+p_i) \cdot v_{\perp} \ , \\ \Delta^R_{ijk}(q,\mu^2) &= \left(c^{(ijk)}_{3,1} + c^{(ijk)}_{3,8} \ \mu^2\right)(q+p_i) \cdot e_3 + \left(c^{(ijk)}_{3,4} + c^{(ijk)}_{3,9} \ \mu^2\right)(q+p_i) \cdot e_4 \\ &\quad + c^{(ijk)}_{3,3}((q+p_i) \cdot e_3)^2 + c^{(ijk)}_{3,6}((q+p_i) \cdot e_4)^2 \\ &\quad + c^{(ijk)}_{3,3}((q+p_i) \cdot e_3)^3 + c^{(ijk)}_{3,6}((q+p_i) \cdot e_4)^3 \ , \\ \Delta^R_{ij}(q,\mu^2) &= c^{(i)}_{2,1}(q+p_i) \cdot e_2 + c^{(ij)}_{2,2}((q+p_i) \cdot e_2)^2 \\ &\quad + c^{(ij)}_{2,3}(q+p_i) \cdot e_3 + c^{(ij)}_{2,4}((q+p_i) \cdot e_3)^2 \\ &\quad + c^{(ij)}_{2,5}(q+p_i) \cdot e_4 + c^{(ij)}_{2,6}((q+p_i) \cdot e_4)^2 \\ &\quad + c^{(ij)}_{2,7}((q+p_i) \cdot e_2)((q+p_i) \cdot e_3) + c^{(ij)}_{2,6}((q+p_i) \cdot e_2)((q+p_i) \cdot e_4) \,. \end{split}$$

Hans van Deurzen

$$\begin{split} &\Delta_{ijk\ell m}(q,\mu^2) = c_{i,0}^{(ijk\ell m)} \mu^2 \ , \\ &\Delta_{ijk\ell}(q,\mu^2) = \Delta_{ijk\ell}^{q}(q,\mu^2) + c_{4,0}^{(ijk\ell)} + c_{4,2}^{(ijk\ell)} \mu^2 + c_{4,4}^{(ijk\ell)} \mu^4 \ , \\ &\Delta_{ijk}(q,\mu^2) = \Delta_{ijk}^{q}(q,\mu^2) + c_{3,0}^{(ij)} + c_{3,0}^{(ij)} \mu^2 \ , \\ &\Delta_{ij}(q,\mu^2) = \Delta_{ij}^{q}(q,\mu^2) + c_{2,0}^{(ij)} + c_{2,0}^{(ij)} \mu^2 \ , \\ &\Delta_{ij}(q,\mu^2) = c_{1,0}^{(i)} + c_{1,1}^{(i)}(q+p_i) \cdot e_1) + c_{1,2}^{(i)}((q+p_i) \cdot e_2) \\ &+ c_{1,3}^{(i)}((q+p_i) \cdot e_3) + c_{1,4}^{(i)}((q+p_i) \cdot e_4) \ . \end{split}$$

$$\begin{split} \Delta^{0}_{ijk\ell}(q,\mu^2) &= \left(c_{41}^{(1k0)} + c_{43}^{(1k0)}(\mu^2)(q+p_i) \cdot v_{\perp} \ , \\ \Delta^{0}_{ijk}(q,\mu^2) &= \left(c_{51}^{(1k)} + c_{53}^{(1k)}(\mu^2)(q+p_i) \cdot e_{4} + \left(c_{54}^{(1k)} + c_{53}^{(1k)}(\mu^2)(q+p_i) \cdot e_{4} + c_{53}^{(1k)}((q+p_i) \cdot e_{3})^2 + c_{53}^{(1k)}((q+p_i) \cdot e_{4})^2 \right. \\ &+ c_{53}^{(1k)}((q+p_i) \cdot e_{3})^2 + c_{53}^{(1k)}((q+p_i) \cdot e_{4})^2 \\ &+ c_{53}^{(1k)}(q+p_i) \cdot e_{3})^2 + c_{53}^{(1k)}((q+p_i) \cdot e_{3})^2 \\ &+ c_{53}^{(1k)}(q+p_i) \cdot e_{3} + c_{54}^{(1k)}((q+p_i) \cdot e_{3})^2 \\ &+ c_{53}^{(1k)}(q+p_i) \cdot e_{3} + c_{54}^{(1k)}((q+p_i) \cdot e_{3})^2 \\ &+ c_{53}^{(1k)}(q+p_i) \cdot e_{4} + c_{54}^{(1k)}((q+p_i) \cdot e_{3})^2 \\ &+ c_{53}^{(2k)}(q+p_i) \cdot e_{4} + c_{54}^{(1k)}((q+p_i) \cdot e_{3}) + c_{53}^{(1k)}((q+p_i) \cdot e_{3}) + c_{53}^{(1k)}((q+$$

coefficients:

- 5ple cut: 1 coefficient
- 4ple cut: 5 coefficients
- Sple cut: 10 coefficients
- 2ple cut: 10 coefficients
- 1 ple cut: 5 coefficients

$$\begin{split} & \Delta_{ijk\ell m}(q,\mu^2) = c_{i,0}^{(ijk\ell m)} \mu^2 \;, \\ & \Delta_{ijk\ell}(q,\mu^2) = \Delta_{ijk\ell}^R(q,\mu^2) + c_{4,0}^{(ijk\ell)} + c_{4,2}^{(ijk\ell)} \mu^2 + c_{4,4}^{(ijk\ell)} \mu^4 \;, \\ & \Delta_{ijk}(q,\mu^2) = \Delta_{ijk}^R(q,\mu^2) + c_{3,0}^{(ijk)} + c_{3,1}^{(ij\ell)} \mu^2 \;, \\ & \Delta_{ij}(q,\mu^2) = \Delta_{ij}^R(q,\mu^2) + c_{2,0}^{(ij)} + c_{2,0}^{(ij)} \mu^2 \;, \\ & \Delta_{ij}(q,\mu^2) = c_{1,0}^{(i)} + c_{1,1}^{(i)}(q+p_i) \cdot e_1) + c_{1,2}^{(i)}((q+p_i) \cdot e_2) \\ & \quad + c_{1,3}^{(i)}((q+p_i) \cdot e_3) + c_{1,4}^{(i)}((q+p_i) \cdot e_4) \;. \end{split}$$

$$\begin{split} & \Delta^{B}_{ijk\ell}(q,\mu^2) = \left(c^{\ell_1(kb)}_{4} + c^{\ell_1(kb)}_{4}(\mu^2)(q+p_i) \cdot v_{\perp} \ , \\ & \Delta^{B}_{ijk}(q,\mu^2) = \left(c^{\ell_1(kb)}_{4} + c^{\ell_2(kb)}_{4}(\mu^2)(q+p_i) \cdot e_{3} + \left(c^{\ell_1(k)}_{4,4} + c^{\ell_2(kb)}_{4}(\mu^2)(q+p_i) \cdot e_{4} \right. \\ & + c^{\ell_1(kb)}_{4,3}((q+p_i) \cdot e_{3})^2 + c^{\ell_1(kb)}_{4,3}((q+p_i) \cdot e_{4})^2 \\ & + c^{\ell_1(kb)}_{4,3}((q+p_i) \cdot e_{3})^3 + c^{\ell_1(kb)}_{4,3}((q+p_i) \cdot e_{4})^3 \ , \\ & \Delta^{B}_{ij}(q,\mu^2) = c^{\ell_1(k)}_{4,3}(q+p_i) \cdot e_{3} + c^{\ell_2(k)}_{4,3}((q+p_i) \cdot e_{3})^2 \\ & + c^{\ell_2(k)}_{4,3}(q+p_i) \cdot e_{3} + c^{\ell_2(k)}_{4,3}((q+p_i) \cdot e_{3})^2 \\ & + c^{\ell_2(k)}_{4,3}(q+p_i) \cdot e_{4} + c^{\ell_2(k)}_{4,3}((q+p_i) \cdot e_{3})^2 \\ & + c^{\ell_2(k)}_{4,3}(q+p_i) \cdot e_{4} + c^{\ell_2(k)}_{4,3}((q+p_i) \cdot e_{3})^2 \\ & + c^{\ell_2(k)}_{4,3}((q+p_i) \cdot e_{3}) (q+p_i) \cdot e_{3}) \right) \end{split}$$

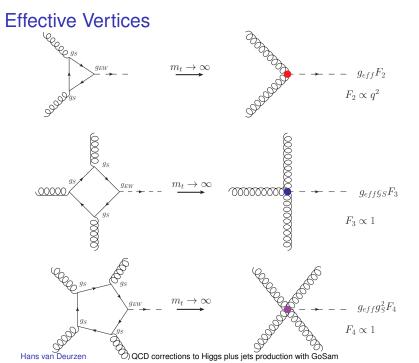
- coefficients:
 - 5ple cut: 1 coefficient
 - 4ple cut: 5 coefficients
 - Sple cut: 10 coefficients
 - 2ple cut: 10 coefficients
 - 1ple cut: 5 coefficients
- form residues process independent
- values of coefficients process dependent

Hans van Deurzen

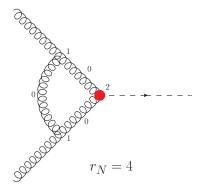
$$\begin{split} & \Delta_{ijk\ell m}(q,\mu^2) = c_{i,0}^{(ijk\ell m)} \mu^2 \;, \\ & \Delta_{ijk\ell}(q,\mu^2) = \Delta_{ijk\ell}^R(q,\mu^2) + c_{4,0}^{(ijk\ell)} + c_{4,2}^{(ijk\ell)} \mu^2 + c_{4,4}^{(ijk\ell)} \mu^4 \;, \\ & \Delta_{ijk}(q,\mu^2) = \Delta_{ijk}^R(q,\mu^2) + c_{3,0}^{(ijk)} + c_{3,1}^{(ij\ell)} \mu^2 \;, \\ & \Delta_{ij}(q,\mu^2) = \Delta_{ij}^R(q,\mu^2) + c_{2,0}^{(ij)} + c_{2,0}^{(ij)} \mu^2 \;, \\ & \Delta_{ij}(q,\mu^2) = c_{1,0}^{(i)} + c_{1,1}^{(i)}(q+p_i) \cdot e_1) + c_{1,2}^{(i)}((q+p_i) \cdot e_2) \\ & \quad + c_{1,3}^{(i)}((q+p_i) \cdot e_3) + c_{1,4}^{(i)}((q+p_i) \cdot e_4) \;. \end{split}$$

$$\begin{split} \Delta^{A}_{ijk\ell}(q,\mu^2) &= \left(e^{i_1(jk)}_{k} + e^{i_1(jk)}_{k} + e$$

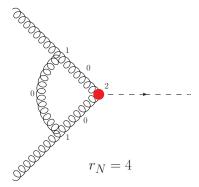
- coefficients:
 - 5ple cut: 1 coefficient
 - 4ple cut: 5 coefficients
 - Sple cut: 10 coefficients
 - 2ple cut: 10 coefficients
 - 1ple cut: 5 coefficients
- form residues process independent
- values of coefficients process dependent
- Implemented in Samurai [Ossola, Reiter, Tramontano, Mastrolia, 2010]



Rankcounting, higher rank



Rankcounting, higher rank



• One effective vertex: $r_N \leq \#D + 1$

Hans van Deurzen

Extended rank residues

$$\begin{split} \Delta_{ijjk\ell m}(q,\mu^2) &= \binom{i_{ijk\ell m}}{s_{,0}}\mu^2 \ , \\ \Delta_{ijjk\ell}(q,\mu^2) &= \Delta^R_{ijk\ell}(q,\mu^2) + c^{(ijk\ell)}_{4,0} + c^{(ijk\ell)}_{4,2}\mu^2 + c^{(ijk\ell)}_{4,4}\mu^4 \ , \\ \Delta_{ijk}(q,\mu^2) &= \Delta^R_{ij}(q,\mu^2) + c^{(ijk)}_{3,0} + c^{(ijk)}_{3,2}\mu^2 \ , \\ \Delta_{ij}(q,\mu^2) &= \Delta^R_{ij}(q,\mu^2) + c^{(ij)}_{2,0} + c^{(ij)}_{2,0}\mu^2 \ , \\ \Delta_{i}(q,\mu^2) &= c^{(i)}_{1,0} + c^{(i)}_{1,1}((q+p_i) \cdot e_1) + c^{(i)}_{1,2}((q+p_i) \cdot e_2) \\ &\quad + c^{(i)}_{1,3}((q+p_i) \cdot e_3) + c^{(i)}_{1,4}((q+p_i) \cdot e_4) \ . \end{split}$$

$$\begin{split} \Delta^{B}_{1jkl}(q,\mu^2) &= \left(c^{(ijk)}_{1,1} + c^{(ijk)}_{3,1} \mu^2\right)(q+p_l) \cdot v_{\perp} \ , \\ \Delta^{R}_{1jk}(q,\mu^2) &= \left(c^{(ijk)}_{3,1} + c^{(ijk)}_{3,k} \mu^2\right)(q+p_l) \cdot e_3 + \left(c^{(ijk)}_{3,k} + c^{(ijk)}_{3,j} \mu^2\right)(q+p_l) \cdot e_4 \\ &+ \frac{c^{(ijk)}_{3,2}}{(q+p_l) \cdot e_3)^2} + c^{(ijk)}_{3,k}(q+p_l) \cdot e_4)^2 \\ &+ \frac{c^{(ijk)}_{3,k}}{(q+p_l) \cdot e_3)^2} + c^{(ijk)}_{3,k}(q+p_l) \cdot e_4)^3 \ , \\ \Delta^{R}_{0j}(q,\mu^2) &= c^{(ijk)}_{3,1}(q+p_l) \cdot e_2 + c^{(ijk)}_{2,2}(q+p_l) \cdot e_3)^2 \\ &+ c^{(ijk)}_{2,2}(q+p_l) \cdot e_2 + c^{(ijk)}_{2,2}(q+p_l) \cdot e_3)^2 \\ &+ c^{(ijk)}_{2,2}(q+p_l) \cdot e_3 + c^{(ijk)}_{2,k}(q+p_l) \cdot e_3)^2 \\ &+ c^{(ijk)}_{2,2}(q+p_l) \cdot e_2(q+p_l) \cdot e_3)^2 \\ &+ c^{(ijk)}_{2,2}((q+p_l) \cdot e_2)(q+p_l) \cdot e_3)^2 \\ &+ c^{(ijk)}_{2,2}((q+p_l) \cdot e_2)(q+p_l) \cdot e_3)^2 \\ &+ c^{(ijk)}_{2,2}((q+p_l) \cdot e_2)(q+p_l) \cdot e_3)^2 \\ &+ c^{(ijk)}_{2,2}((q+p_l) \cdot e_3)(q+p_l) \cdot e_3)^2 \\ &+ c^{(ijk)}_{2,2}(q+p_l) \cdot e_3) + c^{(ijk)}_{2,3}(q+p_l) \cdot e_3)^2 \\ &+ c^{(ijk)}_{2,2}(q+p_l) \cdot e_3)(q+p_l) \cdot e_3)^2 \\ &+ c^{(ijk)}_{2,2}(q+p_l) \cdot e_3) + c^{(ijk)}_{2,3}(q+p_l) \cdot e_3) \\ &+ c^{(ijk)}_{2,3}(q+p_l) \cdot e_3 + c^{(ijk)}_{2,3}(q+p_l) \cdot e_3)^2 \\ &+ c^{(ijk)}_{2,3}(q+p_l) \cdot e_3) + c^{(ijk)}_{2,3}(q+p_l) \cdot e_3) \\ &+ c^{(ijk)}_{2,3}(q+p_l) \cdot e_3 + c^{(ijk)}_{2,3}(q+p_l) \cdot e_3) \\ &+ c^{(ijk)}_{2,3}(q+p_l) \cdot e_3 + c^{(ijk)}_{2,3}(q+p_l) \cdot e_3) \\ &+ c^{(ijk)}_{2,3}(q+p_l) \cdot e_3 + c^{(ijk)}_{2,3}(q+p_l) \cdot e_3) \\ &+ c^{(ijk)}_{2,3}(q+p_l) \cdot e_3 + c^{(ijk)}_{2,3}(q+p_l) \cdot e_3) \\ &+ c^{(ijk)}_{2,3}(q+p_l) \cdot e_3 + c^{(ijk)}_{2,3}(q+p_l) \cdot e_3) \\ &+ c^{(ijk)}_{2,3}(q+p_l) \cdot e_3 + c^{(ijk)}_{2,3}(q+p_l) \cdot e_3) \\ &+ c^{(ijk)}_{2,3}(q+p_l) \cdot e_3 + c^{(ijk)}_{2,3}(q+p_l) \cdot e_3 + c^{(ijk)}_{2,3}(q+p_l) \cdot e_3) \\ &+ c^{(ijk)}_{2,3}(q+p_l) \cdot e_3 + c^{(ijk)}_{2,3}(q+p_l) \cdot$$

Hans van Deurzen

QCD corrections to Higgs plus jets production with GoSam

Extended rank residues

$$\begin{split} &\Delta_{ijk\ell m}(q,\mu^2) = C_{5,0}^{(ijkm)} \; \mu^2 \;, \\ &\Delta_{ijk\ell}(q,\mu^2) = \Delta_{ijk\ell}^R(q,\mu^2) + c_{4,0}^{(ijk\ell)} + c_{4,2}^{(ijk\ell)} \mu^2 + c_{4,4}^{(ijk\ell)} \mu^4 \;, \\ &\Delta_{ijk}(q,\mu^2) = \Delta_{ijk}^R(q,\mu^2) + c_{3,0}^{(ijk)} + c_{3,7}^{(ijk)} \mu^2 \;, \\ &\Delta_{ij}(q,\mu^2) = \Delta_{ij}^R(q,\mu^2) + c_{2,9}^{(ij)} + c_{2,9}^{(ij)} \mu^2 \;, \\ &\Delta_{il}(q,\mu^2) = c_{1,0}^{(i)} + c_{1,1}^{(i)}((q+p_i) \cdot e_1) + c_{1,2}^{(i)}((q+p_i) \cdot e_2) \\ &+ c_{1,3}^{(i)}((q+p_i) \cdot e_3) + c_{i,4}^{(i)}((q+p_i) \cdot e_4) \;. \end{split}$$

$$\begin{split} \Delta^{0}_{ijk\ell}(q,\mu^2) &= \left(c^{(ijkl)}_{\lambda} + c^{(ijkl)}_{\lambda} + c^{(ijkl)}_{\lambda} - p^2_{\lambda}(q+p_{\lambda}) \cdot c_{\lambda} + \\ \Delta^{R}_{ijk\ell}(q,\mu^2) &= \left(c^{(ijk)}_{\lambda} + c^{(ijk)}_{\lambda} + c^{(ijk)}_{\lambda} + c^{(ijk)}_{\lambda} + c^{(ijk)}_{\lambda} - c^{(ijk)}_{\lambda} - c^{(ijk)}_{\lambda} + c^{(ijk)}_{\lambda} - c^{(ijk)}_{\lambda} + c^{(ijk)}_{\lambda} - c^{(ijk)$$

$$\begin{split} \Lambda_{ijk\ell m}(q,\mu^2) &= \Delta_{ijk\ell m}(q,\mu^2) \,, \\ \Lambda_{ijk\ell}(q,\mu^2) &= \Delta_{ijk\ell}(q,\mu^2) + c_{1,3}^{(ijkh)} \, \mu^4 \, (q+p_i) \cdot v_{\perp} \,, \\ \Lambda_{ijk}(q,\mu^2) &= \Delta_{ijk}(q,\mu^2) + c_{1,3}^{(ijk)} \, \mu^4 + c_{3,12}^{(ijk)} \, \mu^2 \, ((q+p_i) \cdot c_3)^2 \\ &+ c_{3,12}^{(ijk)} \, \mu^2 \, ((q+p_i) \cdot c_4)^2 + c_{3,12}^{(ijk)} \, ((q+p_i) \cdot c_3)^4 \\ &+ c_{3,12}^{(ijk)} \, ((q+p_i) \cdot c_4)^4 \,, \\ \Lambda_{ij}(q,\mu^2) &= \Delta_{ij}(q,\mu^2) + \mu^2 \left(c_{2,10}^{(ij} \, (q+p_i) \cdot c_2 + c_{2,11}^{(ij)} \, ((q+p_i) \cdot c_3) \\ &+ c_{3,12}^{(ijk)} \, ((q+p_i) \cdot c_4)^4 \,, \\ (\Lambda_{ij}(q,\mu^2) &= \Delta_{ij}(q,\mu) + c_4) + c_{3,13}^{(ijk)} \, ((q+p_i) \cdot c_3) + c_{3,14}^{(ijk)} \, ((q+p_i) \cdot c_4)^3 \\ &+ c_{3,12}^{(ijk)} \, ((q+p_i) \cdot c_4)^4 + c_{3,14}^{(ijk)} \, ((q+p_i) \cdot c_3)^2 + c_{3,14}^{(ij)} \, ((q+p_i) \cdot c_2)^2 \, ((q+p_i) \cdot c_4) \\ &+ c_{3,11}^{(ij)} \, ((q+p_i) \cdot c_2)^2 \, ((q+p_i) \cdot c_4)^2 \,, \\ &+ c_{3,11}^{(ij)} \, ((q+p_i) \cdot c_2)^2 \, ((q+p_i) \cdot c_4)^2 \,, \\ \Lambda_i(q,\mu^2) &= \Delta_i(q,\mu^2) + c_{1,3}^{(i)} \, ((q+p_i) \cdot c_2)^2 \, + c_{1,4}^{(ij)} \, ((q+p_i) \cdot c_4)^2 \,, \\ &+ c_{1,11}^{(ij)} \, ((q+p_i) \cdot c_3)^2 \, + c_{1,3}^{(i)} \, ((q+p_i) \cdot c_4)^2 \,, \\ &+ c_{1,12}^{(ij)} \, ((q+p_i) \cdot c_3)^2 \, + c_{1,3}^{(i)} \, ((q+p_i) \cdot c_4)^2 \,, \\ &+ c_{1,12}^{(ij)} \, ((q+p_i) \cdot c_3)^2 \, + c_{1,3}^{(i)} \, ((q+p_i) \cdot c_4)^2 \,, \\ &+ c_{1,12}^{(ij)} \, ((q+p_i) \cdot c_3)^2 \, + c_{1,3}^{(i)} \, ((q+p_i) \cdot c_4)^2 \,, \\ &+ c_{1,12}^{(ij)} \, ((q+p_i) \cdot c_3)^2 \, + c_{1,3}^{(i)} \, ((q+p_i) \cdot c_4)^2 \,, \\ &+ c_{1,12}^{(ij)} \, ((q+p_i) \cdot c_3)^2 \, + c_{1,3}^{(i)} \, ((q+p_i) \cdot c_4)^2 \,, \\ &+ c_{1,12}^{(ij)} \, ((q+p_i) \cdot c_3)^2 \, + c_{1,3}^{(i)} \, ((q+p_i) \cdot c_4)^2 \,, \\ &+ c_{1,12}^{(ij)} \, ((q+p_i) \cdot c_3)^2 \, + c_{1,3}^{(i)} \, ((q+p_i) \cdot c_4)^2 \,, \\ &+ c_{1,13}^{(ij)} \, ((q+p_i) \cdot c_3)^2 \, + c_{1,3}^{(i)} \, ((q+p_i) \cdot c_4)^2 \,, \\ &+ c_{1,14}^{(ij)} \, + c_{1,13}^{(ij)} \, ((q+p_i) \cdot c_3)^2 \,, \\ &+ c_{1,14}^{(ij)} \, + c_{1,13}^{(ij)} \, ((q+p_i) \cdot c_3)^2 \,, \\ &+ c_{1,14}^{(ij)} \, + c_{1,13}^{(ij)} \, ((q+p_i) \cdot c_3)^2 \,, \\ &+ c_{1,14}^{(ij)} \, + c_{1,15}^{(ij)} \, ((q+p_i) \cdot c_3)^2 \,, \\ &+ c_{1,14}^{(ij)} \, + c_{1,15}^{(ij)} \, ((q+p$$

[Mastrolia, Mirabella, Peraro, 2012]

Extended rank residues

```
\begin{split} &\Delta_{ijk\ell m}(q,\mu^2) = c_{3,0}^{(ijkm)} \mu^2 \ , \\ &\Delta_{ijk\ell}(q,\mu^2) = \Delta_{ijk\ell}^{R}(q,\mu^2) + c_{4,0}^{(ijk)} + c_{4,2}^{(ijkk)} \mu^2 + c_{4,4}^{(ijk)} \mu^4 \ , \\ &\Delta_{ijk}(q,\mu^2) = \Delta_{ijk}^{R}(q,\mu^2) + c_{3,0}^{(ijk)} + c_{3,7}^{(ijk)} + c_{4,7}^{(ijk)} \mu^2 \ , \\ &\Delta_{ij}(q,\mu^2) = \Delta_{ij}^{R}(q,\mu^2) + c_{2,0}^{(ij)} + c_{2,2}^{(ij)} \mu^2 \ , \\ &\Delta_{i}(q,\mu^2) = c_{1,0}^{R} + c_{1,4}^{(i)}((q+p_i) \cdot e_i) + c_{1,2}^{(i)}((q+p_i) \cdot e_i) \ , \\ &+ c_{1,3}^{(i)}((q+p_i) \cdot e_i) + c_{1,4}^{(i)}((q+p_i) \cdot e_i) \ . \end{split}
```

$$\begin{split} &\Delta^B_{ijk\ell}(q,p^2) = \begin{pmatrix} c_{k1}^{(i)k\ell} + c_{k3}^{(i)k\ell} \, p^2 \end{pmatrix} (q+p_i) \cdot v_{\perp} \,, \\ &\Delta^B_{ijk\ell}(q,p^2) = \begin{pmatrix} c_{k1}^{(i)k} + c_{k3}^{(i)k} \, p^2 \end{pmatrix} (q+p_i) \cdot c_i + \begin{pmatrix} c_{k1}^{(i)k} + c_{k3}^{(i)k} \, p^2 \end{pmatrix} (q+p_i) \cdot c_i \\ &+ c_{k3}^{(i)k} \end{pmatrix} ((q+p_i) \cdot c_j)^2 + c_{k3}^{(i)k} ((q+p_i) \cdot c_i)^2 \\ &+ c_{k3}^{(i)k} \end{pmatrix} ((q+p_i) \cdot c_j)^2 + c_{k3}^{(i)k} ((q+p_i) \cdot c_i)^3 \,, \end{split}$$

 $\Delta^R_{ij}(q,\mu^2) = c^{(ij)}_{2,1}(q+p_i) \cdot e_2 + c^{(ij)}_{2,2}((q+p_i) \cdot e_2)^2$

$$+ c_{2,3}^{(ij)}(q + p_i) \cdot e_3 + c_{2,4}^{(ij)}((q + p_i) \cdot e_3)^2$$

$$+ c_{2,5}^{(ij)}(q + p_i) \cdot e_4 + c_{2,6}^{(ij)}((q + p_i) \cdot e_4)^2$$

$$+ \ c_{2,7}^{(ij)}((q+p_i) \cdot e_2)((q+p_i) \cdot e_3) + c_{2,8}^{(ij)}((q+p_i) \cdot e_2)((q+p_i) \cdot e_4) \, .$$

 $\Lambda_{ijk\ell m}(q,\mu^2) = \Delta_{ijk\ell m}(q,\mu^2) \ ,$

 $\Lambda_{ijk\ell}(q,\mu^2) = \Delta_{ijk\ell}(q,\mu^2) + c_{4,5}^{(ijk\ell)} \ \mu^4 \ (q+p_i) \cdot v_\perp \ ,$

 $\Lambda_{ijk}(q, \mu^2) = \Delta_{ijk}(q, \mu^2) + c_{3,14}^{(ijk)} \mu^4 + c_{3,10}^{(ijk)} \mu^2 ((q + p_i) \cdot e_3)^2 \\ + c_{3,11}^{(ijk)} \mu^2 ((q + p_i) \cdot e_4)^2 + c_{3,10}^{(ijk)} ((q + p_i) \cdot e_3)^4$

 $+ c_{3,13}^{(ijk)} ((q + p_i) \cdot e_4)^4$,

 $\Lambda_{ij}(q, \mu^2) = \Delta_{ij}(q, \mu^2) + \mu^2 (c_{2,10}^{(ij)}(q + p_i) \cdot e_2 + c_{2,11}^{(ij)}(q + p_i) \cdot e_3$

```
+ c_{2,12}^{(ij)}(q + p_i) \cdot e_4 \Big) + c_{2,13}^{(ij)} ((q + p_i) \cdot e_2)^3 + c_{2,14}^{(ij)} ((q + p_i) \cdot e_3)^3
```

```
+ c_{2,15}^{(ij)}((q+p_i) \cdot e_4)^3 + c_{2,16}^{(ij)}((q+p_i) \cdot e_2)^2((q+p_i) \cdot e_3)
```

 $+ \, c_{2,17}^{(ij)}((q+p_i) \cdot e_2)^2((q+p_i) \cdot e_4)$

 $+ \, c_{2,18}^{(ij)} ((q+p_i) \cdot e_2) ((q+p_i) \cdot e_3)^2$

 $+ c_{2,19}^{(ij)}((q + p_i) \cdot c_2)((q + p_i) \cdot c_4)^2$,

```
\Lambda_i(q,\mu^2) = \Delta_i(q,\mu^2) + c_{1,5}^{(i)}((q+p_i)\cdot e_1)^2 + c_{1,6}^{(i)}((q+p_i)\cdot e_2)^2
```

```
+ c_{1,7}^{(i)} ((q + p_i) \cdot e_3)^2 + c_{1,8}^{(i)} ((q + p_i) \cdot e_4)^2
```

```
+ \, c_{1,10}^{(i)}((q+p_i) \cdot e_1)((q+p_i) \cdot e_3) + c_{1,11}^{(i)}((q+p_i) \cdot e_1)((q+p_i) \cdot e_4)
```

```
+ c_{1,12}^{(i)}((q+p_i) \cdot e_2)((q+p_i) \cdot e_3) + c_{1,13}^{(i)}((q+p_i) \cdot e_2)((q+p_i) \cdot e_4)
```

```
+ \, c_{1,14}^{(i)} \ \mu^2 + c_{1,15}^{(i)}((q+p_i) \cdot e_3)((q+p_i) \cdot e_4) \ ,
```

Hans van Deurzen

QCD corrections to Higgs plus jets production with GoSam

coefficients:

- ► 5ple cut: 1→1 coefficient
- Aple cut: 5→6 coefficients
- Sple cut: 10→15 coefficients
- P 2ple cut: 10→20 coefficients
- Iple cut: 5→15 coefficients

► Samurai → XSamurai

 $\blacktriangleright \ \Delta(q,\mu^2)$ multivariate polynomial in q and μ^2

- $\blacktriangleright \ \Delta(q,\mu^2)$ multivariate polynomial in q and μ^2
- Systematic sampling: DFT

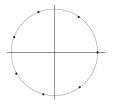
- $\blacktriangleright \ \Delta(q,\mu^2)$ multivariate polynomial in q and μ^2
- Systematic sampling: DFT

$$P(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n$$

- $\blacktriangleright \ \Delta(q,\mu^2)$ multivariate polynomial in q and μ^2
- Systematic sampling: DFT

$$P(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n$$

$$x_k = \rho \exp\left[-2\pi i \frac{k}{n+1}\right]$$



- $\Delta(q,\mu^2)$ multivariate polynomial in q and μ^2
- Systematic sampling: DFT

$$P(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n$$
$$x_k = \rho \exp\left[-2\pi i \frac{k}{n+1}\right]$$
$$P_k = P(x_k) = \sum_{l=0}^n c_l \rho^l \exp\left[-2\pi i \frac{k}{(n+1)}l\right]$$

- $\Delta(q,\mu^2)$ multivariate polynomial in q and μ^2
- Systematic sampling: DFT

$$P(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n$$

$$x_k = \rho \exp\left[-2\pi i \frac{k}{n+1}\right]$$

$$P_k = P(x_k) = \sum_{l=0}^n c_l \rho^l \exp\left[-2\pi i \frac{k}{(n+1)}l\right]$$

$$\sum_{n=0}^{N-1} \exp\left[2\pi i \frac{k}{N}n\right] \exp\left[-2\pi i \frac{k'}{N}n\right] = N\delta_{kk'}$$

Hans van Deurzen

- $\Delta(q,\mu^2)$ multivariate polynomial in q and μ^2
- Systematic sampling: DFT

$$P(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n$$

$$x_k = \rho \exp\left[-2\pi i \frac{k}{n+1}\right]$$

$$P_k = P(x_k) = \sum_{l=0}^n c_l \rho^l \exp\left[-2\pi i \frac{k}{(n+1)}l\right]$$

$$\sum_{n=0}^{N-1} \exp\left[2\pi i \frac{k}{N}n\right] \exp\left[-2\pi i \frac{k'}{N}n\right] = N\delta_{kk'}$$

$$c_l = \frac{\rho^{-l}}{n+1} \sum_{k=0}^n P_k \exp\left[2\pi i \frac{k}{n+1}l\right]$$

Hans van Deurzen

QCD corrections to Higgs plus jets production with GoSam

•
$$q = \sum_{i=1}^{4} x_i e_i \Rightarrow$$
 Cuts constrain DOFs

- $q = \sum_{i=1}^{4} x_i e_i \Rightarrow$ Cuts constrain DOFs
- At quintuple cut: Everything constrained

- $q = \sum_{i=1}^{4} x_i e_i \Rightarrow$ Cuts constrain DOFs
- At quintuple cut: Everything constrained
- At quadruple cut: μ^2 free

- $q = \sum_{i=1}^{4} x_i e_i \Rightarrow$ Cuts constrain DOFs
- At quintuple cut: Everything constrained
- At quadruple cut: μ^2 free
- At triple cut: $\Delta = \Delta(x_3, x_4)$ Condition: $x_3x_4 = C(x_1, x_2) = C \Rightarrow \Delta(x_3, C/x_3)$

- $q = \sum_{i=1}^{4} x_i e_i \Rightarrow$ Cuts constrain DOFs
- At quintuple cut: Everything constrained
- At quadruple cut: μ^2 free
- At triple cut: $\Delta = \Delta(x_3, x_4)$ Condition: $x_3x_4 = C(x_1, x_2) = C \Rightarrow \Delta(x_3, C/x_3)$
 - Use DFT: solutions $\propto \frac{1}{C}$, problem if C = 0

- $q = \sum_{i=1}^{4} x_i e_i \Rightarrow$ Cuts constrain DOFs
- At quintuple cut: Everything constrained
- At quadruple cut: μ^2 free
- At triple cut: $\Delta = \Delta(x_3, x_4)$ Condition: $x_3x_4 = C(x_1, x_2) = C \Rightarrow \Delta(x_3, C/x_3)$
 - Use DFT: solutions $\propto \frac{1}{C}$, problem if C = 0
 - ► Use DFT twice, $\Delta(x3, C/x3)$ and $\Delta(C/x_4, x_4)$ solutions $\propto \frac{1}{1-C}$, problem if C = 1

- $q = \sum_{i=1}^{4} x_i e_i \Rightarrow$ Cuts constrain DOFs
- At quintuple cut: Everything constrained
- At quadruple cut: μ^2 free
- At triple cut: $\Delta = \Delta(x_3, x_4)$ Condition: $x_3x_4 = C(x_1, x_2) = C \Rightarrow \Delta(x_3, C/x_3)$
 - Use DFT: solutions $\propto \frac{1}{C}$, problem if C = 0
 - ► Use DFT twice, $\Delta(x3, C/x3)$ and $\Delta(C/x_4, x_4)$ solutions $\propto \frac{1}{1-C}$, problem if C = 1
 - Branching:

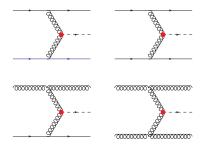
if(C=0): Use $\Delta(x_3, C/x_3)$ and $\Delta(C/x_4, x_4)$ else: Use $\Delta(x_3, C/x_3)$

• At double cut: $\Delta(x_1, x_3, x_4)$ with $x_3x_4 = F(x_1) = Ax_1^2 + Bx_1 + C$ lot of branchings:

- At double cut: $\Delta(x_1, x_3, x_4)$ with $x_3x_4 = F(x_1) = Ax_1^2 + Bx_1 + C$ lot of branchings:
 - F=0 has no solutions
 - F=0 has one zero solution
 - F=0 has one non-zero solution
 - F=0 has two zero solutions
 - F=0 has two non-zero solutions
 - ... think carefully

- At double cut: $\Delta(x_1, x_3, x_4)$ with $x_3x_4 = F(x_1) = Ax_1^2 + Bx_1 + C$ lot of branchings:
 - F=0 has no solutions
 - F=0 has one zero solution
 - F=0 has one non-zero solution
 - F=0 has two zero solutions
 - F=0 has two non-zero solutions
 - ... think carefully
- At single cut: Δ(x₁, x₂, x₃, x₄) with x₃x₄ x₁x₂ = G similar to the triple cut

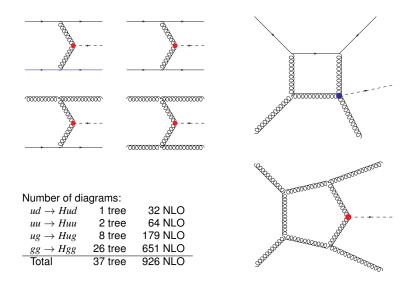
Higgs plus two jets



Number of diagrams:

$ud \rightarrow Hud$	1 tree	32 NLO
$uu \rightarrow Huu$	2 tree	64 NLO
$ug \rightarrow Hug$	8 tree	179 NLO
$gg \rightarrow Hgg$	26 tree	651 NLO
Total	37 tree	926 NLO

Higgs plus two jets



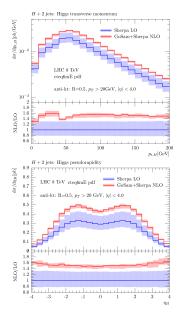
Results Higgs plus two jets

- Interface GoSam + Sherpa (talk Gionata Luisoni)
- Pole cancellation
- Agreement with MCFM(v6.4) and R. K. Ellis, W. Giele, and G. Zanderighi

	gg ightarrow Hgg	
c_0	$0.1507218951429643 \cdot 10^{-3}$	
a_0	59.8657965614009	
a_{-1}	-26.4694115468536	-26.46941154671207
a_{-2}	-12.00000000000001	-12.000000000000000000000000000000000000
	gg ightarrow Hq ar q	
c_0	$0.5677813961826772\cdot 10^{-6}$	
a_0	66.6635142370683	
a_{-1}	-16.5816633315627	-16.58166333155405
a_{-2}	-8.666666666666669	-8.666666666666666666666666666666666666
	$q\bar{q} \rightarrow Hq\bar{q}$	
	99 / 1199	
c_0	$0.1099527895267439 \cdot 10^{-5}$	
c_0 a_0		
	$0.1099527895267439 \cdot 10^{-5}$	-10.96737553134440
a_0	$\begin{array}{c} 0.1099527895267439 \cdot 10^{-5} \\ 88.2959834057198 \end{array}$	-10.96737553134440 -5.3333333333333333334
$a_0 \\ a_{-1}$	$\begin{array}{r} 0.1099527895267439 \cdot 10^{-5} \\ 88.2959834057198 \\ -10.9673755313443 \end{array}$	
$a_0 \\ a_{-1}$	$\begin{array}{r} 0.1099527895267439\cdot 10^{-5}\\ 88.2959834057198\\ -10.9673755313443\\ -5.333333333333332\end{array}$	
$a_0 \\ a_{-1} \\ a_{-2}$	$\begin{array}{c} 0.1099527895267439\cdot 10^{-5}\\ 88:2959834057198\\ -10.9673755313443\\ -5.3333333333333333\\ q\bar{q} \rightarrow Hq'\bar{q}' \end{array}$	
$a_0 \\ a_{-1} \\ a_{-2} \\ c_0$	$\begin{array}{c} 0.1099527895267439\cdot 10^{-5}\\ 88:2959834057198\\ -10.9673755313443\\ -5.333333333333322\\ \hline q\bar{q}\rightarrow Hq'\bar{q}'\\ 0.1011096724203529\cdot 10^{-6} \end{array}$	

$$\frac{2\Re \left\{ \mathcal{M}^{\text{tree-level}} \mathcal{M}^{\text{one-loop}} \right\}}{\left(4\pi\alpha_s\right) \left| \mathcal{M}^{\text{tree-level}} \right|^2} \equiv \frac{a_{-2}}{\epsilon^2} + \frac{a_{-1}}{\epsilon} + a_0$$

Results Higgs plus two jets

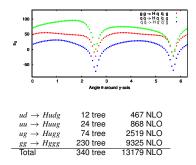


LHC 8 TeV PDF: cteq6mE anti-kt: R = 0.5 $p_T > 20 \text{ GeV}$ $|\eta| < 4.0$ $M_H = 125 \text{ GeV}$ $\mu_R = \mu_F = M_H$

Hans van Deurzen

QCD corrections to Higgs plus jets production with GoSam

Results Higgs plus three jets



$$\frac{2\mathfrak{Re}\left\{\mathcal{M}^{\text{tree-level}*}\mathcal{M}^{\text{one-loop}}\right\}}{\left(4\pi\alpha_{s}\right)\left|\mathcal{M}^{\text{tree-level}}\right|^{2}} \equiv \frac{a_{-2}}{\epsilon^{2}} + \frac{a_{-1}}{\epsilon} + a_{0}$$

	$gg \rightarrow Hq\bar{q}g$	
b_0	$0.6309159660038877 \cdot 10^{-4}$	
a_0	48.68424097859422	
a_{-1}	-36.08277727147958	-36.08277728199094
a_{-2}	-11.666666666667209	-11.66666666666666666666666666666666666
	$q\bar{q} \rightarrow Hq\bar{q}g$	
b_0	$0.3609139855530763\cdot 10^{-4}$	
a_0	69.32351140490162	
a_{-1}	-29.98862932963380	-29.98862932963629
a_{-2}	-8.333333333333333333333333	-8.333333333333333333334
	$q\bar{q} \rightarrow Hq'\bar{q}'g$	
b_0	$0.2687990772405433\cdot 10^{-5}$	
a_0	15.79262767177915	
a_{-1}	-32.35320587070861	-32.35320587073038
a_{-2}	-8.333333333333333398	-8.333333333333333333333333333333333333

Hans van Deurzen

QCD corrections to Higgs plus jets production with GoSam

Summary

► Samurai extended to higher rank numerators ⇒ can do effective vertices

Summary

- ► Samural extended to higher rank numerators ⇒ can do effective vertices
- Higgs plus two jets in gluon fusion has been calculated and integrated

Summary

- ► Samural extended to higher rank numerators ⇒ can do effective vertices
- Higgs plus two jets in gluon fusion has been calculated and integrated
- Higgs plus three jets in production