
QCD corrections to Higgs plus jets production
with GoSam

Hans van Deurzen

Max-Planck-Institut für Physik
Munich, Germany

NLO QCD corrections to the production of Higgs plus two jets at the LHC,
e-Print: arXiv:1301.0493, accepted by Physics Letters B

[HvD, Greiner, Luisoni, Mastrolia, Mirabella, Ossola, Peraro, von Soden-Fraunhofen, Tramontano, 2013]



Outline

Motivation

Scattering amplitudes at one-loop

Determining the parametric form of the numerator

Extended rank numerator

Higgs plus two jets

Higgs plus three jets

Summary

Hans van Deurzen QCD corrections to Higgs plus jets production with GoSam 2 / 19



Motivation

I Boson discovered by Atlas and CMS→ Higgs?
I Need to determine properties:

spin, CP properties, couplings

I Leading order too strong dependence on renormalization and factorization scale
I Development of more general framework for NLO automation
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Scattering amplitudes at one-loop

Mn ≡
∫
An(q̄) dq̄ ≡

∫
d−2εµ

∫
d4q

N(q, µ2)

D̄0 . . . D̄n−1

I Decompose:

Aone−loop
n = c5,0 + c4,0 + c4,4

+c3,0 + c3,7 + c2,0 + c2,9 + c1,0

– 1 –

Aone−loop
n = c5,0 + c4,0 + c4,4

+c3,0 + c3,7 + c2,0 + c2,9 + c1,0

– 1 –

J
H
E
P
0
8
(
2
0
1
0
)
0
8
0

The result is given as Laurent expansion in ε up to the finite-order, and accounts for the

full rational terms.

samurai is implemented as a Fortran90 library, publicly available at the webpage:

http://cern.ch/samurai

and it is linked to OneLOop [78] and QCDLoop [95] for the numerical evaluation of the

MI. We applied it to a series of known processes, like the four-, six-photon and eight-

photon scattering in QED, the QCD virtual corrections to Drell-Yan, to the leading-color

amplitude for V + 1jet production, to the six-quark scattering, q1q̄1 → q2q̄2 q3q̄3, and

to the contributions of the massive-scalar loop-diagrams to the all-plus helicity five- and

six-gluon scattering.

In particular, for the virtual corrections to q1q̄1 → q2q̄2 q3q̄3 [52], we also considered the

reduction of automatically generated integrands, by interfacing samurai with an infras-

tructure derived from golem-2.0 [96], which provides numerators of Feynman integrals.

These examples are thought to be used both as a guide to understand the samurai frame-

work, and as templates to generate the codes for other calculations.

In the context of collaborations among different groups aiming at automated NLO cal-

culations relevant for LHC phenomenology [97], and, therefore, providing complementary

structures to be interfaced [98], samurai could constitute the module for the systematic

evaluation of the virtual corrections.

The paper is organized as follows. The reduction algorithm is discussed in section 2;

section 3 describes the key-points of the samurai library, while a series of applications are

illustrated in section 4. In section 5, we resume our conclusions.

2 Reduction algorithm

The reduction method is based on the general decomposition for the integrand of a generic

one-loop amplitude, originally proposed by Papadopoulos, Pittau and one of us [80, 89],

and later extended by Ellis, Giele, Kunszt and Melnikov [87, 88]. Within the dimensional

regularization scheme, any one-loop n-point amplitude can be written as

An =

∫
ddq̄ A(q̄, ε) ,

A(q̄, ε) =
N (q̄, ε)

D̄0D̄1 · · · D̄n−1
,

D̄i = (q̄ + pi)
2 − m2

i = (q + pi)
2 − m2

i − µ2, (p0 #= 0) . (2.1)

We use a bar to denote objects living in d = 4 − 2ε dimensions, following the prescription

/̄q = /q + /µ , with q̄2 = q2 − µ2 . (2.2)

Also, we use the notation f(q̄) as short-hand notation for f(q, µ2).
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One-Loop Integrand Decomposition
Ossola, Papadopoulos, Pittau
Ellis, Giele, Kunszt, Melnikov

means of the Finiteness Theorem and of the Shape Lemma, we proved that the residue at

the maximum-cuts is parametrised exactly by a number of coe�cients equal to the number

of solutions of the cut itself.

6. Some stu↵
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on the properties of the Gröbner basis, and for comments of the manuscript.

E.M. thanks the Center for Theoretical Physics of New York City College of Technology

for hospitality during the final stages of this project.

The work of P.M. and T.P. is supported by the Alexander von Humboldt Foundation,

in the framework of the Sofja Kovaleskaja Award, endowed by the German Federal Ministry

of Education and Research. The work of G.O. is supported in part by the National Science

Foundation under Grant PHY-1068550.

– 10 –

d+4 d+2 d+2

Passarino, Veltman; Tarasov∫
d−2εµ2d4qAn(q) =

∫
dq̄

c5,0

D0D1D2D3D4
+

∫
dq̄

c4,0 + c4,4µ
4

D0D1D2D3

+

∫
dq̄

c3,0 + c3,7µ
2

D0D1D2
+

∫
dq̄

c2,0 + c2,9µ
2

D0D1
+

∫
dq̄

c1,0

D0

I computation ofMn → computation of coefficients

Hans van Deurzen QCD corrections to Higgs plus jets production with GoSam 4 / 19



Scattering amplitudes at one-loop

Mn ≡
∫
An(q̄) dq̄ ≡

∫
d−2εµ

∫
d4q

N(q, µ2)

D̄0 . . . D̄n−1

I Decompose:

Aone−loop
n = c5,0 + c4,0 + c4,4

+c3,0 + c3,7 + c2,0 + c2,9 + c1,0

– 1 –

Aone−loop
n = c5,0 + c4,0 + c4,4

+c3,0 + c3,7 + c2,0 + c2,9 + c1,0

– 1 –

J
H
E
P
0
8
(
2
0
1
0
)
0
8
0

The result is given as Laurent expansion in ε up to the finite-order, and accounts for the

full rational terms.

samurai is implemented as a Fortran90 library, publicly available at the webpage:

http://cern.ch/samurai

and it is linked to OneLOop [78] and QCDLoop [95] for the numerical evaluation of the

MI. We applied it to a series of known processes, like the four-, six-photon and eight-

photon scattering in QED, the QCD virtual corrections to Drell-Yan, to the leading-color

amplitude for V + 1jet production, to the six-quark scattering, q1q̄1 → q2q̄2 q3q̄3, and

to the contributions of the massive-scalar loop-diagrams to the all-plus helicity five- and

six-gluon scattering.

In particular, for the virtual corrections to q1q̄1 → q2q̄2 q3q̄3 [52], we also considered the

reduction of automatically generated integrands, by interfacing samurai with an infras-

tructure derived from golem-2.0 [96], which provides numerators of Feynman integrals.

These examples are thought to be used both as a guide to understand the samurai frame-

work, and as templates to generate the codes for other calculations.

In the context of collaborations among different groups aiming at automated NLO cal-

culations relevant for LHC phenomenology [97], and, therefore, providing complementary
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section 3 describes the key-points of the samurai library, while a series of applications are
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on the properties of the Gröbner basis, and for comments of the manuscript.

E.M. thanks the Center for Theoretical Physics of New York City College of Technology

for hospitality during the final stages of this project.

The work of P.M. and T.P. is supported by the Alexander von Humboldt Foundation,

in the framework of the Sofja Kovaleskaja Award, endowed by the German Federal Ministry

of Education and Research. The work of G.O. is supported in part by the National Science

Foundation under Grant PHY-1068550.

– 10 –

d+4 d+2 d+2

Passarino, Veltman; Tarasov

∫
d−2εµ2d4qAn(q) =

∫
dq̄

c5,0

D0D1D2D3D4
+

∫
dq̄

c4,0 + c4,4µ
4

D0D1D2D3

+

∫
dq̄

c3,0 + c3,7µ
2

D0D1D2
+

∫
dq̄

c2,0 + c2,9µ
2

D0D1
+

∫
dq̄

c1,0

D0

I computation ofMn → computation of coefficients

Hans van Deurzen QCD corrections to Higgs plus jets production with GoSam 4 / 19



Scattering amplitudes at one-loop

Mn ≡
∫
An(q̄) dq̄ ≡

∫
d−2εµ

∫
d4q

N(q, µ2)

D̄0 . . . D̄n−1

I Decompose:

Aone−loop
n = c5,0 + c4,0 + c4,4

+c3,0 + c3,7 + c2,0 + c2,9 + c1,0

– 1 –

Aone−loop
n = c5,0 + c4,0 + c4,4

+c3,0 + c3,7 + c2,0 + c2,9 + c1,0

– 1 –

J
H
E
P
0
8
(
2
0
1
0
)
0
8
0

The result is given as Laurent expansion in ε up to the finite-order, and accounts for the

full rational terms.

samurai is implemented as a Fortran90 library, publicly available at the webpage:

http://cern.ch/samurai

and it is linked to OneLOop [78] and QCDLoop [95] for the numerical evaluation of the

MI. We applied it to a series of known processes, like the four-, six-photon and eight-

photon scattering in QED, the QCD virtual corrections to Drell-Yan, to the leading-color

amplitude for V + 1jet production, to the six-quark scattering, q1q̄1 → q2q̄2 q3q̄3, and

to the contributions of the massive-scalar loop-diagrams to the all-plus helicity five- and

six-gluon scattering.

In particular, for the virtual corrections to q1q̄1 → q2q̄2 q3q̄3 [52], we also considered the

reduction of automatically generated integrands, by interfacing samurai with an infras-

tructure derived from golem-2.0 [96], which provides numerators of Feynman integrals.

These examples are thought to be used both as a guide to understand the samurai frame-

work, and as templates to generate the codes for other calculations.

In the context of collaborations among different groups aiming at automated NLO cal-

culations relevant for LHC phenomenology [97], and, therefore, providing complementary

structures to be interfaced [98], samurai could constitute the module for the systematic

evaluation of the virtual corrections.

The paper is organized as follows. The reduction algorithm is discussed in section 2;

section 3 describes the key-points of the samurai library, while a series of applications are

illustrated in section 4. In section 5, we resume our conclusions.

2 Reduction algorithm

The reduction method is based on the general decomposition for the integrand of a generic

one-loop amplitude, originally proposed by Papadopoulos, Pittau and one of us [80, 89],

and later extended by Ellis, Giele, Kunszt and Melnikov [87, 88]. Within the dimensional

regularization scheme, any one-loop n-point amplitude can be written as

An =

∫
ddq̄ A(q̄, ε) ,

A(q̄, ε) =
N (q̄, ε)

D̄0D̄1 · · · D̄n−1
,

D̄i = (q̄ + pi)
2 − m2

i = (q + pi)
2 − m2

i − µ2, (p0 #= 0) . (2.1)

We use a bar to denote objects living in d = 4 − 2ε dimensions, following the prescription

/̄q = /q + /µ , with q̄2 = q2 − µ2 . (2.2)

Also, we use the notation f(q̄) as short-hand notation for f(q, µ2).

– 4 –

J
H
E
P
0
8
(
2
0
1
0
)
0
8
0

The result is given as Laurent expansion in ε up to the finite-order, and accounts for the

full rational terms.

samurai is implemented as a Fortran90 library, publicly available at the webpage:

http://cern.ch/samurai

and it is linked to OneLOop [78] and QCDLoop [95] for the numerical evaluation of the

MI. We applied it to a series of known processes, like the four-, six-photon and eight-

photon scattering in QED, the QCD virtual corrections to Drell-Yan, to the leading-color

amplitude for V + 1jet production, to the six-quark scattering, q1q̄1 → q2q̄2 q3q̄3, and

to the contributions of the massive-scalar loop-diagrams to the all-plus helicity five- and

six-gluon scattering.

In particular, for the virtual corrections to q1q̄1 → q2q̄2 q3q̄3 [52], we also considered the

reduction of automatically generated integrands, by interfacing samurai with an infras-

tructure derived from golem-2.0 [96], which provides numerators of Feynman integrals.

These examples are thought to be used both as a guide to understand the samurai frame-

work, and as templates to generate the codes for other calculations.

In the context of collaborations among different groups aiming at automated NLO cal-

culations relevant for LHC phenomenology [97], and, therefore, providing complementary

structures to be interfaced [98], samurai could constitute the module for the systematic

evaluation of the virtual corrections.

The paper is organized as follows. The reduction algorithm is discussed in section 2;

section 3 describes the key-points of the samurai library, while a series of applications are

illustrated in section 4. In section 5, we resume our conclusions.

2 Reduction algorithm

The reduction method is based on the general decomposition for the integrand of a generic

one-loop amplitude, originally proposed by Papadopoulos, Pittau and one of us [80, 89],

and later extended by Ellis, Giele, Kunszt and Melnikov [87, 88]. Within the dimensional

regularization scheme, any one-loop n-point amplitude can be written as

An =

∫
ddq̄ A(q̄, ε) ,

A(q̄, ε) =
N (q̄, ε)

D̄0D̄1 · · · D̄n−1
,

D̄i = (q̄ + pi)
2 − m2

i = (q + pi)
2 − m2

i − µ2, (p0 #= 0) . (2.1)

We use a bar to denote objects living in d = 4 − 2ε dimensions, following the prescription

/̄q = /q + /µ , with q̄2 = q2 − µ2 . (2.2)

Also, we use the notation f(q̄) as short-hand notation for f(q, µ2).

– 4 –

J
H
E
P
0
8
(
2
0
1
0
)
0
8
0

The result is given as Laurent expansion in ε up to the finite-order, and accounts for the

full rational terms.

samurai is implemented as a Fortran90 library, publicly available at the webpage:

http://cern.ch/samurai

and it is linked to OneLOop [78] and QCDLoop [95] for the numerical evaluation of the

MI. We applied it to a series of known processes, like the four-, six-photon and eight-

photon scattering in QED, the QCD virtual corrections to Drell-Yan, to the leading-color

amplitude for V + 1jet production, to the six-quark scattering, q1q̄1 → q2q̄2 q3q̄3, and

to the contributions of the massive-scalar loop-diagrams to the all-plus helicity five- and

six-gluon scattering.

In particular, for the virtual corrections to q1q̄1 → q2q̄2 q3q̄3 [52], we also considered the

reduction of automatically generated integrands, by interfacing samurai with an infras-

tructure derived from golem-2.0 [96], which provides numerators of Feynman integrals.

These examples are thought to be used both as a guide to understand the samurai frame-

work, and as templates to generate the codes for other calculations.

In the context of collaborations among different groups aiming at automated NLO cal-

culations relevant for LHC phenomenology [97], and, therefore, providing complementary

structures to be interfaced [98], samurai could constitute the module for the systematic

evaluation of the virtual corrections.

The paper is organized as follows. The reduction algorithm is discussed in section 2;

section 3 describes the key-points of the samurai library, while a series of applications are

illustrated in section 4. In section 5, we resume our conclusions.

2 Reduction algorithm

The reduction method is based on the general decomposition for the integrand of a generic

one-loop amplitude, originally proposed by Papadopoulos, Pittau and one of us [80, 89],

and later extended by Ellis, Giele, Kunszt and Melnikov [87, 88]. Within the dimensional

regularization scheme, any one-loop n-point amplitude can be written as

An =

∫
ddq̄ A(q̄, ε) ,

A(q̄, ε) =
N (q̄, ε)

D̄0D̄1 · · · D̄n−1
,

D̄i = (q̄ + pi)
2 − m2

i = (q + pi)
2 − m2

i − µ2, (p0 #= 0) . (2.1)

We use a bar to denote objects living in d = 4 − 2ε dimensions, following the prescription

/̄q = /q + /µ , with q̄2 = q2 − µ2 . (2.2)

Also, we use the notation f(q̄) as short-hand notation for f(q, µ2).

– 4 –

One-Loop Integrand Decomposition
Ossola, Papadopoulos, Pittau
Ellis, Giele, Kunszt, Melnikov

means of the Finiteness Theorem and of the Shape Lemma, we proved that the residue at

the maximum-cuts is parametrised exactly by a number of coe�cients equal to the number

of solutions of the cut itself.

6. Some stu↵

Aone�loop
n =

Z
d�2✏µ

Z
d4q An(q, µ2) , An(q, µ2) ⌘ Nn(q, µ2)

D̄0D̄1 · · · D̄n�1
(6.1)

An(q, µ2) 6= c5,0

D̄0D̄1D̄2D̄3D̄4
+

c4,0 + c4,4µ
4

D̄0D̄1D̄2D̄3
+

c3,0 + c3,7µ
2

D̄0D̄1D̄2
+

c2,0 + c2,9µ
2

D̄0D̄1
+

c1,0

D̄0

=
c5,0 + f01234(q, µ

2)

D̄0D̄1D̄2D̄3D̄4
+

c4,0 + c4,4µ
4 + f0123(q, µ

2)

D̄0D̄1D̄2D̄3
+

c3,0 + c3,7µ
2 + f012(q, µ

2)

D̄0D̄1D̄2

+
c2,0 + c2,9µ

2 + f01(q, µ
2)

D̄0D̄1
+

c1,0 + f0(q, µ
2)

D̄0

Z
d�2✏µ

Z
d4q

fi1i2···in(q, µ2)

D̄i1D̄i2 · · · D̄in

= 0 . (6.2)

Nn(q, µ4)

D̄0D̄1 · · · D̄n�1
=

�01234(q, µ
2)

D̄0D̄1D̄2D̄3D̄4
+

�0123(q, µ
2)

D̄0D̄1D̄2D̄3
+

�012(q, µ
2)

D̄0D̄1D̄2
+

�01(q, µ
2)

D̄0D̄1
+

�0(q, µ
2)

D̄0

Acknowledgments

We are indebted to Simon Badger and Yang Zhang for fruitful discussions, in particular
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The result is given as Laurent expansion in ε up to the finite-order, and accounts for the

full rational terms.
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means of the Finiteness Theorem and of the Shape Lemma, we proved that the residue at

the maximum-cuts is parametrised exactly by a number of coe�cients equal to the number

of solutions of the cut itself.

6. Some stu↵

Aone�loop
n =

Z
d�2✏µ

Z
d4q An(q, µ2) , An(q, µ2) ⌘ Nn(q, µ2)

D̄0D̄1 · · · D̄n�1
(6.1)

An(q, µ2) 6= c5,0

D̄0D̄1D̄2D̄3D̄4
+

c4,0 + c4,4µ
4

D̄0D̄1D̄2D̄3
+

c3,0 + c3,7µ
2

D̄0D̄1D̄2
+
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D̄0D̄1
+

c1,0
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Z
d�2✏µ

Z
d4q
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D̄i1D̄i2 · · · D̄in

= 0 . (6.2)
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D̄0D̄1 · · · D̄n�1
=

�01234(q, µ
2)

D̄0D̄1D̄2D̄3D̄4
+

�0123(q, µ
2)

D̄0D̄1D̄2D̄3
+

�012(q, µ
2)

D̄0D̄1D̄2
+

�01(q, µ
2)

D̄0D̄1
+

�0(q, µ
2)

D̄0
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Passarino, Veltman; Tarasov

∫
d−2εµ2d4qAn(q) =

∫
dq̄

c5,0

D0D1D2D3D4
+

∫
dq̄

c4,0 + c4,4µ
4

D0D1D2D3

+

∫
dq̄

c3,0 + c3,7µ
2

D0D1D2
+

∫
dq̄

c2,0 + c2,9µ
2

D0D1
+

∫
dq̄

c1,0

D0

I integral→ integrand:

An(q) =
c5,0 + f01234(q, µ2)

D0D1D2D3D4
+

c4,0 + c4,4µ
4 + f0123(q, µ2)

D0D1D2D3

+
c3,0 + c3,7µ

2 + f012(q, µ2)

D0D1D2
+

c2,0 + c2,9µ
2 + f01(q, µ2)

D0D1
+

c1,0 + f0(q, µ2)

D0

∫
d−2εµ2

∫
d4q

fij...(q, µ2)

DiDj...
= 0

An =
∑
ijkl

∆ijkl(q, µ2)

DiDjDkDl
+

∑
ijk

∆ijk(q, µ2)

DiDjDk
+

∑
ij

∆ij(q, µ2)

DiDj
+

∑
i

∆i(q, µ2)

Di
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Integrand decomposition algorithm

2.2.2 Quintuple Cut

The residue of the quintuple-cut, D̄i = . . . = D̄m = 0, defined as,

∆ijk!m(q̄) = Resijk!m

{
N(q̄)

D̄0 · · · D̄n−1

}
(2.11)

can be parametrized as [99],

∆ijk!m(q̄) = c
(ijk!m)
5,0 µ2 . (2.12)

2.2.3 Quadruple Cut

The residue of the quadruple-cut, D̄i = . . . = D̄! = 0, defined as,

∆ijk!(q̄) = Resijk!

{
N(q̄)

D̄0 · · · D̄n−1
−

n−1∑

i<<m

∆ijk!m(q̄)

D̄iD̄jD̄kD̄!D̄m

}
(2.13)

is parametrized as,

∆ijk!(q̄)=c
(ijk!)
4,0 + c

(ijk!)
4,2 µ2 + c

(ijk!)
4,4 µ4 +

+
(
c
(ijk!)
4,1 + c

(ijk!)
4,3 µ2

)[
(K3 · e4)(q + p0) · e3 − (K3 · e3)(q + p0) · e4

]
=

=c
(ijk!)
4,0 + c

(ijk!)
4,2 µ2 + c

(ijk!)
4,4 µ4 −

(
c
(ijk!)
4,1 + c

(ijk!)
4,3 µ2

)[
(K3 · e4)x4 − (K3 · e3)x3

]
(e1 · e2) ,

(2.14)

where K3 is the third leg of the 4-point function associated to the considered quadruple-cut.

2.2.4 Triple Cut

The residue of the triple-cut, D̄i = D̄j = D̄k = 0, defined as,

∆ijk(q̄) = Resijk

{
N(q̄)

D̄0 · · · D̄n−1
−

n−1∑

i<<m

∆ijk!m(q̄)

D̄iD̄jD̄kD̄!D̄m
−

n−1∑

i<<!

∆ijk!(q̄)

D̄iD̄jD̄kD̄!

}
(2.15)

is parametrized as,

∆ijk(q̄) = c
(ijk)
3,0 + c

(ijk)
3,7 µ2 +

+ c
(ijk)
3,1 (q + p0) · e3 + c

(ijk)
3,2 ((q + p0) · e3)

2 + c
(ijk)
3,3 ((q + p0) · e3)

3 +

+ c
(ijk)
3,4 (q + p0) · e4 + c

(ijk)
3,5 ((q + p0) · e4)

2 + c
(ijk)
3,6 ((q + p0) · e4)

3 =

= c
(ijk)
3,0 + c

(ijk)
3,7 µ2 −

(
c
(ijk)
3,1 x4 + c

(ijk)
3,4 x3

)
(e1 · e2) +

+
(
c
(ijk)
3,2 x2

4 + c
(ijk)
3,5 x2

3

)
(e1 · e2)

2 −
(
c
(ijk)
3,3 x3

4 + c
(ijk)
3,6 x3

3

)
(e1 · e2)

3 . (2.16)
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2.2.5 Double Cut

The residue of the double-cut, D̄i = D̄j = 0, defined as,

∆ij(q̄) = Resij

{
N(q̄)

D̄0 · · · D̄n−1
−

n−1∑

i<<m

∆ijk!m(q̄)

D̄iD̄jD̄kD̄!D̄m
−

n−1∑

i<<!

∆ijk!(q̄)

D̄iD̄jD̄kD̄!
−

n−1∑

i<<k

∆ijk(q̄)

D̄iD̄jD̄k

}
, (2.17)

can be interpolated by the following form,

∆ij(q̄) = c
(ij)
2,0 + c

(ij)
2,9 µ2 +

+ c
(ij)
2,1 (q + p0) · e2 + c

(ij)
2,2 ((q + p0) · e2)

2 +

+ c
(ij)
2,3 (q + p0) · e3 + c

(ij)
2,4 ((q + p0) · e3)

2 +

+ c
(ij)
2,5 (q + p0) · e4 + c

(ij)
2,6 ((q + p0) · e4)

2 +

+ c
(ij)
2,7 ((q + p0) · e2)((q + p0) · e3) + c

(ij)
2,8 ((q + p0) · e2)((q + p0) · e4) =

= c
(ij)
2,0 + c

(ij)
2,9 µ2 +

(
c
(ij)
2,1 x1 − c

(ij)
2,3 x4 − c

(ij)
2,5 x3

)
(e1 · e2) +

+
(
c
(ij)
2,2 x2

1 + c
(ij)
2,4 x2

4 + c
(ij)
2,6 x2

3 − c
(ij)
2,7 x1x4 − c

(ij)
2,8 x1x3

)
(e1 · e2)

2 . (2.18)

2.2.6 Single Cut

The residue of the single-cut, D̄i = 0, defined as,

∆i(q̄) = Resi

{
N(q̄)

D̄0 · · · D̄n−1
−

n−1∑

i<<m

∆ijk!m(q̄)

D̄iD̄jD̄kD̄!D̄m
−

n−1∑

i<<!

∆ijk!(q̄)

D̄iD̄jD̄kD̄!
+

−
n−1∑

i<<k

∆ijk(q̄)

D̄iD̄jD̄k
−

n−1∑

i<j

∆ij(q̄)

D̄iD̄j

}
(2.19)

can be interpolated as follows,

∆i(q̄) = c
(i)
1,0 + c

(i)
1,1((q + p0) · e1) + c

(i)
1,2((q + p0) · e2) +

+ c
(i)
1,3((q + p0) · e3) + c

(i)
1,4((q + p0) · e4) =

= c
(i)
1,0 +

(
c
(i)
1,1x2 + c

(i)
1,2x1 − c

(i)
1,3x4 − c

(i)
1,4x3

)
(e1 · e2) . (2.20)

2.2.7 Discrete Fourier Transform

As proposed in [94], the coefficients of a polynomial of degree n in the variable x, say P (x),

defined as,

P (x) =

n∑

!=0

c! x! , (2.21)

can be extracted by means of projections, according to the the Discrete Fourier Transform.

The basic procedure is very simple:

– 8 –

Hans van Deurzen QCD corrections to Higgs plus jets production with GoSam 7 / 19



Integrand decomposition algorithm
2.2.2 Quintuple Cut

The residue of the quintuple-cut, D̄i = . . . = D̄m = 0, defined as,
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)[
(K3 · e4)(q + p0) · e3 − (K3 · e3)(q + p0) · e4

]
=
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4,4 µ4 −
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c
(ijk!)
4,1 + c

(ijk!)
4,3 µ2

)[
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]
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where K3 is the third leg of the 4-point function associated to the considered quadruple-cut.
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4,0 + c

(ijk!)
4,2 µ2 + c

(ijk!)
4,4 µ4 +

+
(
c
(ijk!)
4,1 + c

(ijk!)
4,3 µ2

)[
(K3 · e4)(q + p0) · e3 − (K3 · e3)(q + p0) · e4

]
=

=c
(ijk!)
4,0 + c

(ijk!)
4,2 µ2 + c

(ijk!)
4,4 µ4 −

(
c
(ijk!)
4,1 + c

(ijk!)
4,3 µ2

)[
(K3 · e4)x4 − (K3 · e3)x3

]
(e1 · e2) ,

(2.14)

where K3 is the third leg of the 4-point function associated to the considered quadruple-cut.

2.2.4 Triple Cut

The residue of the triple-cut, D̄i = D̄j = D̄k = 0, defined as,

∆ijk(q̄) = Resijk

{
N(q̄)

D̄0 · · · D̄n−1
−

n−1∑

i<<m

∆ijk!m(q̄)

D̄iD̄jD̄kD̄!D̄m
−

n−1∑

i<<!

∆ijk!(q̄)

D̄iD̄jD̄kD̄!

}
(2.15)

is parametrized as,

∆ijk(q̄) = c
(ijk)
3,0 + c

(ijk)
3,7 µ2 +

+ c
(ijk)
3,1 (q + p0) · e3 + c

(ijk)
3,2 ((q + p0) · e3)

2 + c
(ijk)
3,3 ((q + p0) · e3)

3 +

+ c
(ijk)
3,4 (q + p0) · e4 + c

(ijk)
3,5 ((q + p0) · e4)

2 + c
(ijk)
3,6 ((q + p0) · e4)

3 =

= c
(ijk)
3,0 + c

(ijk)
3,7 µ2 −

(
c
(ijk)
3,1 x4 + c

(ijk)
3,4 x3

)
(e1 · e2) +

+
(
c
(ijk)
3,2 x2

4 + c
(ijk)
3,5 x2

3

)
(e1 · e2)

2 −
(
c
(ijk)
3,3 x3

4 + c
(ijk)
3,6 x3

3

)
(e1 · e2)

3 . (2.16)
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2.2.5 Double Cut

The residue of the double-cut, D̄i = D̄j = 0, defined as,

∆ij(q̄) = Resij

{
N(q̄)

D̄0 · · · D̄n−1
−

n−1∑

i<<m

∆ijk!m(q̄)

D̄iD̄jD̄kD̄!D̄m
−

n−1∑

i<<!

∆ijk!(q̄)

D̄iD̄jD̄kD̄!
−

n−1∑

i<<k

∆ijk(q̄)

D̄iD̄jD̄k

}
, (2.17)

can be interpolated by the following form,

∆ij(q̄) = c
(ij)
2,0 + c

(ij)
2,9 µ2 +

+ c
(ij)
2,1 (q + p0) · e2 + c

(ij)
2,2 ((q + p0) · e2)

2 +

+ c
(ij)
2,3 (q + p0) · e3 + c

(ij)
2,4 ((q + p0) · e3)

2 +

+ c
(ij)
2,5 (q + p0) · e4 + c

(ij)
2,6 ((q + p0) · e4)

2 +

+ c
(ij)
2,7 ((q + p0) · e2)((q + p0) · e3) + c

(ij)
2,8 ((q + p0) · e2)((q + p0) · e4) =

= c
(ij)
2,0 + c

(ij)
2,9 µ2 +

(
c
(ij)
2,1 x1 − c

(ij)
2,3 x4 − c

(ij)
2,5 x3

)
(e1 · e2) +

+
(
c
(ij)
2,2 x2

1 + c
(ij)
2,4 x2

4 + c
(ij)
2,6 x2

3 − c
(ij)
2,7 x1x4 − c

(ij)
2,8 x1x3

)
(e1 · e2)

2 . (2.18)

2.2.6 Single Cut

The residue of the single-cut, D̄i = 0, defined as,

∆i(q̄) = Resi

{
N(q̄)

D̄0 · · · D̄n−1
−

n−1∑

i<<m

∆ijk!m(q̄)

D̄iD̄jD̄kD̄!D̄m
−

n−1∑

i<<!

∆ijk!(q̄)

D̄iD̄jD̄kD̄!
+

−
n−1∑

i<<k

∆ijk(q̄)

D̄iD̄jD̄k
−

n−1∑

i<j

∆ij(q̄)

D̄iD̄j

}
(2.19)

can be interpolated as follows,

∆i(q̄) = c
(i)
1,0 + c

(i)
1,1((q + p0) · e1) + c

(i)
1,2((q + p0) · e2) +

+ c
(i)
1,3((q + p0) · e3) + c

(i)
1,4((q + p0) · e4) =

= c
(i)
1,0 +

(
c
(i)
1,1x2 + c

(i)
1,2x1 − c

(i)
1,3x4 − c

(i)
1,4x3

)
(e1 · e2) . (2.20)

2.2.7 Discrete Fourier Transform

As proposed in [94], the coefficients of a polynomial of degree n in the variable x, say P (x),

defined as,

P (x) =

n∑

!=0

c! x! , (2.21)

can be extracted by means of projections, according to the the Discrete Fourier Transform.

The basic procedure is very simple:
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ResiduesThe functions ∆(q, µ2) are parametrized in terms of the basis (2.6) and of the vec-

tors (2.7):

∆ijk!m(q, µ2) = c
(ijk!m)
5,0 µ2 , (2.8)

∆ijk!(q, µ
2) = ∆R

ijk!(q, µ
2) + c

(ijk!)
4,0 + c

(ijk!)
4,2 µ2 + c

(ijk!)
4,4 µ4 , (2.9)

∆ijk(q, µ
2) = ∆R

ijk(q, µ
2) + c

(ijk)
3,0 + c

(ijk)
3,7 µ2 , (2.10)

∆ij(q, µ
2) = ∆R

ij(q, µ
2) + c

(ij)
2,0 + c

(ij)
2,9 µ2 , (2.11)

∆i(q, µ
2) = c

(i)
1,0 + c

(i)
1,1((q + pi) · e1) + c

(i)
1,2((q + pi) · e2)

+ c
(i)
1,3((q + pi) · e3) + c

(i)
1,4((q + pi) · e4) . (2.12)

For later convenience, we define the reduced polynomials ∆R as,

∆R
ijk!(q, µ

2) =
(
c
(ijk!)
4,1 + c

(ijk!)
4,3 µ2

)
(q + pi) · v⊥ , (2.13)

∆R
ijk(q, µ

2) =
(
c
(ijk)
3,1 + c

(ijk)
3,8 µ2

)
(q + pi) · e3 +

(
c
(ijk)
3,4 + c

(ijk)
3,9 µ2

)
(q + pi) · e4

+ c
(ijk)
3,2 ((q + pi) · e3)

2 + c
(ijk)
3,5 ((q + pi) · e4)

2

+ c
(ijk)
3,3 ((q + pi) · e3)

3 + c
(ijk)
3,6 ((q + pi) · e4)

3 , (2.14)

∆R
ij(q, µ

2) = c
(ij)
2,1 (q + pi) · e2 + c

(ij)
2,2 ((q + pi) · e2)

2

+ c
(ij)
2,3 (q + pi) · e3 + c

(ij)
2,4 ((q + pi) · e3)

2

+ c
(ij)
2,5 (q + pi) · e4 + c

(ij)
2,6 ((q + pi) · e4)

2

+ c
(ij)
2,7 ((q + pi) · e2)((q + pi) · e3) + c

(ij)
2,8 ((q + pi) · e2)((q + pi) · e4) . (2.15)

Neglecting terms of O(ε), the one loop amplitude can be written in terms of master

integrals and of the coefficients of ∆ijk!m, ∆ijk!, ∆ijk, ∆ij, and ∆i,

An =

n−1∑

i<j<k<!

{
c
(ijk!)
4,0 Iijk! + c

(ijk!)
4,4 Iijk![µ

4]

}

+

n−1∑

i<j<k

{
c
(ijk)
3,0 Iijk + c

(ijk)
3,7 Iijk[µ

2]

}

+

n−1∑

i<j

{
c
(ij)
2,0 Iij + c

(ij)
2,1 Iij [(q + pi) · e2] + c

(ij)
2,2 Iij [((q + pi) · e2)

2] + c
(ij)
2,9 Iij [µ

2]

}

+
n−1∑

i

c
(i)
1,0Ii , (2.16)

where

Ii1···ik [α] ≡
∫

ddq̄
α

Di1 · · · Dik

, Ii1···ik ≡ Ii1···ik [1]. (2.17)
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(ijk)
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+ c
(ijk)
3,3 ((q + pi) · e3)

3 + c
(ijk)
3,6 ((q + pi) · e4)

3 , (2.14)

∆R
ij(q, µ

2) = c
(ij)
2,1 (q + pi) · e2 + c

(ij)
2,2 ((q + pi) · e2)

2

+ c
(ij)
2,3 (q + pi) · e3 + c

(ij)
2,4 ((q + pi) · e3)

2

+ c
(ij)
2,5 (q + pi) · e4 + c

(ij)
2,6 ((q + pi) · e4)

2

+ c
(ij)
2,7 ((q + pi) · e2)((q + pi) · e3) + c

(ij)
2,8 ((q + pi) · e2)((q + pi) · e4) . (2.15)

Neglecting terms of O(ε), the one loop amplitude can be written in terms of master

integrals and of the coefficients of ∆ijk!m, ∆ijk!, ∆ijk, ∆ij, and ∆i,

An =
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i<j<k<!
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c
(ijk!)
4,0 Iijk! + c

(ijk!)
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3,0 Iijk + c
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(ij)
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2] + c
(ij)
2,9 Iij [µ
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c
(i)
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where

Ii1···ik [α] ≡
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Residues

The functions ∆(q, µ2) are parametrized in terms of the basis (2.6) and of the vec-
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2) + c

(ij)
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(ijk)
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+ c
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2 + c
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2
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I coefficients:
I 5ple cut: 1 coefficient
I 4ple cut: 5 coefficients
I 3ple cut: 10 coefficients
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Extended rank residues

The functions ∆(q, µ2) are parametrized in terms of the basis (2.6) and of the vec-

tors (2.7):

∆ijk!m(q, µ2) = c
(ijk!m)
5,0 µ2 , (2.8)

∆ijk!(q, µ
2) = ∆R

ijk!(q, µ
2) + c

(ijk!)
4,0 + c

(ijk!)
4,2 µ2 + c

(ijk!)
4,4 µ4 , (2.9)

∆ijk(q, µ
2) = ∆R

ijk(q, µ
2) + c

(ijk)
3,0 + c

(ijk)
3,7 µ2 , (2.10)

∆ij(q, µ
2) = ∆R

ij(q, µ
2) + c

(ij)
2,0 + c

(ij)
2,9 µ2 , (2.11)

∆i(q, µ
2) = c

(i)
1,0 + c

(i)
1,1((q + pi) · e1) + c

(i)
1,2((q + pi) · e2)

+ c
(i)
1,3((q + pi) · e3) + c

(i)
1,4((q + pi) · e4) . (2.12)

For later convenience, we define the reduced polynomials ∆R as,

∆R
ijk!(q, µ

2) =
(
c
(ijk!)
4,1 + c

(ijk!)
4,3 µ2

)
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Neglecting terms of O(ε), the one loop amplitude can be written in terms of master

integrals and of the coefficients of ∆ijk!m, ∆ijk!, ∆ijk, ∆ij, and ∆i,
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+
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where
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α

Di1 · · · Dik

, Ii1···ik ≡ Ii1···ik [1]. (2.17)
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The residues ∆ presented in section 2 are the most general polynomials with r ≤ n

satisfying these requirements. Here we show, as an example, their extension to the case

r ≤ n + 1. In this case, the decomposition of the numerator has to be extended as follows:

N(q, µ2) =
n−1∑

i<<m

Λijk!m(q, µ2)
n−1∏

h "=i,j,k,!,m

Dh +
n−1∑

i<<!

Λijk!(q, µ
2)

n−1∏

h "=i,j,k,!

Dh+

+
n−1∑

i<<k

Λijk(q, µ
2)

n−1∏

h "=i,j,k

Dh +
n−1∑

i<j

Λij(q, µ
2)

n−1∏

h "=i,j

Dh

+
n−1∑

i

Λi(q, µ
2)

n−1∏

h "=i

Dh + Λ(q, µ2)
n−1∏

h=0

Dh , (6.8)

where the polynomials Λ are defined as,

Λijk!m(q, µ2) = ∆ijk!m(q, µ2) ,

Λijk!(q, µ
2) = ∆ijk!(q, µ

2) + c
(ijk!)
4,5 µ4 (q + pi) · v⊥ ,

Λijk(q, µ
2) = ∆ijk(q, µ

2) + c
(ijk)
3,14 µ4 + c

(ijk)
3,10 µ2 ((q + pi) · e3)

2

+ c
(ijk)
3,11 µ2 ((q + pi) · e4)

2 + c
(ijk)
3,12 ((q + pi) · e3)

4

+ c
(ijk)
3,13 ((q + pi) · e4)

4 ,

Λij(q, µ
2) = ∆ij(q, µ

2) + µ2
(
c
(ij)
2,10 (q + pi) · e2 + c

(ij)
2,11 (q + pi) · e3

+ c
(ij)
2,12(q + pi) · e4

)
+ c

(ij)
2,13 ((q + pi) · e2)

3 + c
(ij)
2,14((q + pi) · e3)

3

+ c
(ij)
2,15((q + pi) · e4)

3 + c
(ij)
2,16((q + pi) · e2)

2((q + pi) · e3)

+ c
(ij)
2,17((q + pi) · e2)

2((q + pi) · e4)

+ c
(ij)
2,18((q + pi) · e2)((q + pi) · e3)

2

+ c
(ij)
2,19((q + pi) · e2)((q + pi) · e4)

2 ,

Λi(q, µ
2) = ∆i(q, µ

2) + c
(i)
1,5((q + pi) · e1)

2 + c
(i)
1,6((q + pi) · e2)

2

+ c
(i)
1,7((q + pi) · e3)

2 + c
(i)
1,8((q + pi) · e4)

2

+ c
(i)
1,10((q + pi) · e1)((q + pi) · e3) + c

(i)
1,11((q + pi) · e1)((q + pi) · e4)

+ c
(i)
1,12((q + pi) · e2)((q + pi) · e3) + c

(i)
1,13((q + pi) · e2)((q + pi) · e4)

+ c
(i)
1,14 µ2 + c

(i)
1,15((q + pi) · e3)((q + pi) · e4) ,

Λ(q, µ2) = c0 . (6.9)

The functions ∆, appearing already in the case r ≤ n, were given in Eqs. (2.8)–(2.12). We

observe that the polynomial residues of 4-, 3-, 2-, and 1-point function acquire a richer

structure, and a 0-point coefficient c0 does appear. The latter coefficient is needed for

the complete reconstruction of the integrand, but it is spurious. Indeed it multiplies a
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Extended rank residues

The functions ∆(q, µ2) are parametrized in terms of the basis (2.6) and of the vec-

tors (2.7):

∆ijk!m(q, µ2) = c
(ijk!m)
5,0 µ2 , (2.8)

∆ijk!(q, µ
2) = ∆R

ijk!(q, µ
2) + c

(ijk!)
4,0 + c

(ijk!)
4,2 µ2 + c

(ijk!)
4,4 µ4 , (2.9)

∆ijk(q, µ
2) = ∆R

ijk(q, µ
2) + c

(ijk)
3,0 + c

(ijk)
3,7 µ2 , (2.10)

∆ij(q, µ
2) = ∆R

ij(q, µ
2) + c

(ij)
2,0 + c

(ij)
2,9 µ2 , (2.11)

∆i(q, µ
2) = c

(i)
1,0 + c

(i)
1,1((q + pi) · e1) + c

(i)
1,2((q + pi) · e2)

+ c
(i)
1,3((q + pi) · e3) + c

(i)
1,4((q + pi) · e4) . (2.12)

For later convenience, we define the reduced polynomials ∆R as,

∆R
ijk!(q, µ

2) =
(
c
(ijk!)
4,1 + c

(ijk!)
4,3 µ2

)
(q + pi) · v⊥ , (2.13)

∆R
ijk(q, µ

2) =
(
c
(ijk)
3,1 + c

(ijk)
3,8 µ2

)
(q + pi) · e3 +

(
c
(ijk)
3,4 + c

(ijk)
3,9 µ2

)
(q + pi) · e4

+ c
(ijk)
3,2 ((q + pi) · e3)

2 + c
(ijk)
3,5 ((q + pi) · e4)

2

+ c
(ijk)
3,3 ((q + pi) · e3)

3 + c
(ijk)
3,6 ((q + pi) · e4)

3 , (2.14)

∆R
ij(q, µ

2) = c
(ij)
2,1 (q + pi) · e2 + c

(ij)
2,2 ((q + pi) · e2)

2

+ c
(ij)
2,3 (q + pi) · e3 + c

(ij)
2,4 ((q + pi) · e3)

2

+ c
(ij)
2,5 (q + pi) · e4 + c

(ij)
2,6 ((q + pi) · e4)

2

+ c
(ij)
2,7 ((q + pi) · e2)((q + pi) · e3) + c

(ij)
2,8 ((q + pi) · e2)((q + pi) · e4) . (2.15)

Neglecting terms of O(ε), the one loop amplitude can be written in terms of master

integrals and of the coefficients of ∆ijk!m, ∆ijk!, ∆ijk, ∆ij, and ∆i,

An =

n−1∑

i<j<k<!

{
c
(ijk!)
4,0 Iijk! + c

(ijk!)
4,4 Iijk![µ

4]

}

+

n−1∑

i<j<k

{
c
(ijk)
3,0 Iijk + c

(ijk)
3,7 Iijk[µ

2]

}

+

n−1∑

i<j

{
c
(ij)
2,0 Iij + c

(ij)
2,1 Iij [(q + pi) · e2] + c

(ij)
2,2 Iij [((q + pi) · e2)

2] + c
(ij)
2,9 Iij [µ

2]

}

+
n−1∑

i

c
(i)
1,0Ii , (2.16)

where

Ii1···ik [α] ≡
∫

ddq̄
α

Di1 · · · Dik

, Ii1···ik ≡ Ii1···ik [1]. (2.17)
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Dh +
n−1∑
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h "=i,j
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+
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i

Λi(q, µ
2)

n−1∏

h "=i
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n−1∏

h=0

Dh , (6.8)

where the polynomials Λ are defined as,

Λijk!m(q, µ2) = ∆ijk!m(q, µ2) ,

Λijk!(q, µ
2) = ∆ijk!(q, µ

2) + c
(ijk!)
4,5 µ4 (q + pi) · v⊥ ,

Λijk(q, µ
2) = ∆ijk(q, µ

2) + c
(ijk)
3,14 µ4 + c

(ijk)
3,10 µ2 ((q + pi) · e3)

2

+ c
(ijk)
3,11 µ2 ((q + pi) · e4)

2 + c
(ijk)
3,12 ((q + pi) · e3)

4

+ c
(ijk)
3,13 ((q + pi) · e4)

4 ,

Λij(q, µ
2) = ∆ij(q, µ

2) + µ2
(
c
(ij)
2,10 (q + pi) · e2 + c

(ij)
2,11 (q + pi) · e3

+ c
(ij)
2,12(q + pi) · e4

)
+ c

(ij)
2,13 ((q + pi) · e2)

3 + c
(ij)
2,14((q + pi) · e3)

3

+ c
(ij)
2,15((q + pi) · e4)

3 + c
(ij)
2,16((q + pi) · e2)

2((q + pi) · e3)

+ c
(ij)
2,17((q + pi) · e2)

2((q + pi) · e4)

+ c
(ij)
2,18((q + pi) · e2)((q + pi) · e3)

2

+ c
(ij)
2,19((q + pi) · e2)((q + pi) · e4)

2 ,

Λi(q, µ
2) = ∆i(q, µ

2) + c
(i)
1,5((q + pi) · e1)

2 + c
(i)
1,6((q + pi) · e2)

2

+ c
(i)
1,7((q + pi) · e3)

2 + c
(i)
1,8((q + pi) · e4)

2

+ c
(i)
1,10((q + pi) · e1)((q + pi) · e3) + c

(i)
1,11((q + pi) · e1)((q + pi) · e4)

+ c
(i)
1,12((q + pi) · e2)((q + pi) · e3) + c

(i)
1,13((q + pi) · e2)((q + pi) · e4)

+ c
(i)
1,14 µ2 + c

(i)
1,15((q + pi) · e3)((q + pi) · e4) ,

Λ(q, µ2) = c0 . (6.9)

The functions ∆, appearing already in the case r ≤ n, were given in Eqs. (2.8)–(2.12). We

observe that the polynomial residues of 4-, 3-, 2-, and 1-point function acquire a richer

structure, and a 0-point coefficient c0 does appear. The latter coefficient is needed for

the complete reconstruction of the integrand, but it is spurious. Indeed it multiplies a
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The residues ∆ presented in section 2 are the most general polynomials with r ≤ n

satisfying these requirements. Here we show, as an example, their extension to the case
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(ijk)
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(ijk)
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(ijk)
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+ c
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(ij)
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3 + c
(ij)
2,14((q + pi) · e3)

3

+ c
(ij)
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3 + c
(ij)
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2((q + pi) · e3)

+ c
(ij)
2,17((q + pi) · e2)

2((q + pi) · e4)

+ c
(ij)
2,18((q + pi) · e2)((q + pi) · e3)

2

+ c
(ij)
2,19((q + pi) · e2)((q + pi) · e4)

2 ,

Λi(q, µ
2) = ∆i(q, µ

2) + c
(i)
1,5((q + pi) · e1)

2 + c
(i)
1,6((q + pi) · e2)

2

+ c
(i)
1,7((q + pi) · e3)

2 + c
(i)
1,8((q + pi) · e4)

2

+ c
(i)
1,10((q + pi) · e1)((q + pi) · e3) + c

(i)
1,11((q + pi) · e1)((q + pi) · e4)

+ c
(i)
1,12((q + pi) · e2)((q + pi) · e3) + c

(i)
1,13((q + pi) · e2)((q + pi) · e4)

+ c
(i)
1,14 µ2 + c

(i)
1,15((q + pi) · e3)((q + pi) · e4) ,

Λ(q, µ2) = c0 . (6.9)

The functions ∆, appearing already in the case r ≤ n, were given in Eqs. (2.8)–(2.12). We

observe that the polynomial residues of 4-, 3-, 2-, and 1-point function acquire a richer

structure, and a 0-point coefficient c0 does appear. The latter coefficient is needed for

the complete reconstruction of the integrand, but it is spurious. Indeed it multiplies a

– 19 –

I coefficients:
I 5ple cut: 1→1 coefficient
I 4ple cut: 5→6 coefficients
I 3ple cut: 10→15 coefficients
I 2ple cut: 10→20 coefficients
I 1ple cut: 5→15 coefficients

I Samurai→ XSamurai
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Discrete Fourier Transformation (DFT)

I ∆(q, µ2) multivariate polynomial in q and µ2

I Systematic sampling: DFT

P(x) = c0 + c1x + c2x2 + ...+ cnxn

xk = ρ exp
[
−2πi

k
n + 1

]

Pk = P(xk) =

n∑
l=0

clρ
l exp

[
−2πi

k
(n + 1)

l
]

N−1∑
n=0

exp
[

2πi
k
N

n
]

exp
[
−2πi

k′

N
n
]
= Nδkk′

cl =
ρ−l

n + 1

n∑
k=0

Pk exp
[

2πi
k

n + 1
l
]
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Sampling problems

I q =
∑4

i=1 xiei ⇒ Cuts constrain DOFs

I At quintuple cut: Everything constrained
I At quadruple cut: µ2 free

I At triple cut: ∆ = ∆(x3, x4) Condition: x3x4 = C(x1, x2) = C⇒ ∆(x3,C/x3)
I Use DFT: solutions ∝ 1

C , problem if C = 0
I Use DFT twice, ∆(x3,C/x3) and ∆(C/x4, x4)

solutions ∝ 1
1−C , problem if C = 1

I Branching:
if(C=0): Use ∆(x3,C/x3) and ∆(C/x4, x4)
else: Use ∆(x3,C/x3)
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Sampling problems

I At double cut: ∆(x1, x3, x4) with x3x4 = F(x1) = Ax2
1 + Bx1 + C lot of branchings:

I F=0 has no solutions
I F=0 has one zero solution
I F=0 has one non-zero solution
I F=0 has two zero solutions
I F=0 has two non-zero solutions
I ... think carefully

I At single cut: ∆(x1, x2, x3, x4) with x3x4 − x1x2 = G
similar to the triple cut
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Higgs plus two jets

Number of diagrams:
ud → Hud 1 tree 32 NLO
uu→ Huu 2 tree 64 NLO
ug→ Hug 8 tree 179 NLO
gg→ Hgg 26 tree 651 NLO
Total 37 tree 926 NLO

Hans van Deurzen QCD corrections to Higgs plus jets production with GoSam 15 / 19



Higgs plus two jets

Number of diagrams:
ud → Hud 1 tree 32 NLO
uu→ Huu 2 tree 64 NLO
ug→ Hug 8 tree 179 NLO
gg→ Hgg 26 tree 651 NLO
Total 37 tree 926 NLO

Hans van Deurzen QCD corrections to Higgs plus jets production with GoSam 15 / 19



Results Higgs plus two jets

I Interface GoSam + Sherpa
(talk Gionata Luisoni)

I Pole cancellation
I Agreement with

MCFM(v6.4) and R. K. Ellis,
W. Giele, and G. Zanderighi

scales is defined as

µ = µR = µF = Ĥt , (9)

whereas theoretical uncertainties are assessed by vary-
ing simultaneously the factorization and renormalization
scales in the range

1

2
Ĥt < µ < 2Ĥt . (10)

The error is estimated by taking the envelope of the re-
sulting distributions at the different scales.

3.1. Results

Within our framework, we find the following total cross
sections for the process pp → Hjj in gluon fusion:

σLO[pb] = 1.90+0.58
−0.41 ,

σNLO[pb] = 2.90+0.05
−0.20 ,

where the error is obtained by varying the renormalization
and factorization scales as given in Eq. (9). The LO distri-
butions have been computed using 2.5 × 107 phase space
points, whereas all NLO distributions have been obtained
using 4.0×106 phase space points for the Born and the vir-
tual corrections and 5.0× 108 points for the real radiation
for each scale.

In Figs. 1 and 2, we present the distribution of the trans-
verse momentum pT of the Higgs boson and its pseudora-
pidity η, respectively. Both of them show a K-factor be-
tween the LO and the NLO distribution of about 1.5−1.6,
which is almost flat over a large fraction of kinematical
range. Furthermore both plots show a decrease of the scale
uncertainty of about 50%. Figures 3 and 4 display the
transverse momentum of the first and second jet, whereas
their pseudorapidities are shown in Figs. 5 and 6. The
previous considerations are also true for these latter plots.
For the transverse momentum distributions, however, we
observe a slight change of shapes. In the case of the lead-
ing jet, increasing the pT , the K-factor decreases from 1.6
to 1.4; while for the second leading jet, it increases from
1.4 to 1.6.

4. Virtual corrections to pp → Hjjj

We explore the possibility of extending our framework
to the production of a Higgs boson plus three jets at NLO.

The independent partonic processes contributing to
Hjjj can be obtained by adding one extra gluon to the
final state of the processes listed in Eq.(4). Accordingly,
we generate the codes for the virtual corrections to the
partonic processes with a quark-pair in the final state,

gg → Hqq̄g , qq̄ → Hqq̄g , qq̄ → Hq′q̄′g . (11)

The missing channel gg → Hggg, together with the phase
space integration, will be discussed in a successive study.
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Figure 7: Finite-term of the virtual matrix-elements for gg → Hqq̄g
(red), qq̄ → Hqq̄g (green), qq̄ → Hq′ q̄′g (blue).

We compute, for the first time, the virtual matrix ele-
ments for the three subprocesses listed above, and show
their results along a certain one-dimensional curve in the
space of final state momenta. We take the initial partons
to have momentum p1 and p2, whose 3-momenta lie along
the z-axis, and choose an arbitrary point for the final state
momenta {p3, p4, p5, p6}. For simplicity, we start with the
same phase space point used in the Appendix D (see Ta-
ble D.4). Then, we create new momentum configurations
by rotating the final state through an angle θ about the
y-axis. Figure 7 displays the behavior of the finite part a0

of the individual 2 → 4 amplitudes defined as

2Re {Mtree-level∗Mone-loop}
(4παs) |Mtree-level|2

≡ a−2

ε2
+

a−1

ε
+ a0 , (12)

when the final external momenta are rotated from θ = 0
to θ = 2π. The plots are obtained by sampling over 100
points.

Numerical values for the one-loop amplitudes of the pro-
cesses listed in (11) are collected in Appendix D.

Also in this case we verify that the values of the dou-
ble and the single poles conform to the universal singu-
lar behavior of dimensionally regulated one-loop ampli-
tudes [55].

5. Conclusions

We presented the calculation of the associated produc-
tion of a Higgs boson and two jets, pp → Hjj, at NLO in
QCD, employing the infinite top-mass approximation.

The results were obtained by using a fully automated
framework for fixed order NLO QCD calculations based
on the interplay of the packages GoSam and Sherpa, in-
terfaced through the BLHA standards. We discussed the
technical aspects of the computation, and showed the nu-
merical impact of the radiative corrections on the distribu-
tion of the transverse momentum of the Higgs boson and
its pseudorapidity, as well as of the transverse momentum
and pseudorapidity of the leading and second leading jet.
All plots show a K-factor between the LO and the NLO

5

while for n > 1 it can be proven by induction over n by
using

Gµ1µ2ε1···εn = G µ2ε1···εn−1
µ Gµ1µεn , (B.5)

that is

≡

ε1 ε2 εn

q
µ2 µ1

ε1 ε2 εn−1

µ2

µ
q

εn

µ1

µ

Combining Eq. (B.2) and Eq. (B.3), it is easy to realize
that each rank-(n + 2) term of an n + 1-denominator dia-
gram Γε1···εn is proportional to q2. The factor q2 simplifies
against one denominator leading to a rank n numerator of
an n-denominator integrand.

Appendix C. Benchmark points for pp → Hjj

In this appendix we provide numerical results for the
renormalized virtual contributions to the processes (4), in
correspondence with the phase space point in Table C.1.
The parameters can be read from Eqs. (6), while the renor-
malization and factorization scales are set to the Higgs
mass value. The assignment of the momenta proceeds as
follows

g(p1) g(p2) → H(p3) g(p4) g(p5) ,

g(p1) g(p2) → H(p3) q(p4) q̄(p5) ,

q(p1) q̄(p2) → H(p3) q(p4) q̄(p5) ,

q(p1) q̄(p2) → H(p3) q′(p4) q̄′(p5) . (C.1)

The results are collected in Table C.2 and are computed
using DRED. In the second column of the table we provide
the LO squared amplitude,

c0 ≡ |Mtree-level|2
(4παs)2g2

eff

, (C.2)

and the coefficients ai defined in Eq. (12). As a check
on the reconstruction of the renormalized poles, in the
last column we show the values of a−1 and a−2 obtained
by the universal singular behavior of the dimensionally
regularized one-loop amplitudes [55].

Appendix D. Benchmark points for pp → Hjjj

In this appendix we collect first numerical results for the
renormalized virtual contributions to

g(p1) g(p2) → H(p3) q(p4) q̄(p5) g(p6) ,

q(p1) q̄(p2) → H(p3) q(p4) q̄(p5) g(p6) ,

q(p1) q̄(p2) → H(p3) q′(p4) q̄′(p5) g(p6) . (D.1)

gg → Hgg

c0 0.1507218951429643 · 10−3

a0 59.8657965614009
a−1 −26.4694115468536 −26.46941154671207
a−2 −12.00000000000001 −12.00000000000000

gg → Hqq̄

c0 0.5677813961826772 · 10−6

a0 66.6635142370683
a−1 −16.5816633315627 −16.58166333155405
a−2 −8.66666666666669 −8.666666666666668

qq̄ → Hqq̄

c0 0.1099527895267439 · 10−5

a0 88.2959834057198
a−1 −10.9673755313443 −10.96737553134440
a−2 −5.33333333333332 −5.333333333333334

qq̄ → Hq′q̄′

c0 0.1011096724203529 · 10−6

a0 33.9521626734153
a−1 −13.8649292834138 −13.86492928341388
a−2 −5.33333333333334 −5.333333333333334

Table C.2: Numerical results for the processes listed in Eq. (C.1)

gg → Hqq̄g

b0 0.6309159660038877 · 10−4

a0 48.68424097859422
a−1 −36.08277727147958 −36.08277728199094
a−2 −11.66666666667209 −11.66666666666667

qq̄ → Hqq̄g

b0 0.3609139855530763 · 10−4

a0 69.32351140490162
a−1 −29.98862932963380 −29.98862932963629
a−2 −8.333333333333339 −8.333333333333334

qq̄ → Hq′q̄′g

b0 0.2687990772405433 · 10−5

a0 15.79262767177915
a−1 −32.35320587070861 −32.35320587073038
a−2 −8.333333333333398 −8.333333333333332

Table D.3: Numerical results for the processes listed in Eq. (D.1)

The results, collected in Table D.3, have been computed
using the parameters in Eqs. (6), with the renormalization
and factorization scales set to the Higgs mass value, and
choosing the phase space point given in Table D.4. In
particular, in the second column of Table D.3, we provide

7
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Results Higgs plus two jets

LHC 8 TeV
PDF: cteq6mE
anti-kt:
R = 0.5
pT > 20 GeV
|η| < 4.0
MH = 125 GeV
µR = µF = MH
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Results Higgs plus three jets
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ud → Hudg 12 tree 467 NLO
uu→ Huug 24 tree 868 NLO
ug→ Hugg 74 tree 2519 NLO
gg→ Hggg 230 tree 9325 NLO
Total 340 tree 13179 NLO

scales is defined as

µ = µR = µF = Ĥt , (9)

whereas theoretical uncertainties are assessed by vary-
ing simultaneously the factorization and renormalization
scales in the range

1

2
Ĥt < µ < 2Ĥt . (10)

The error is estimated by taking the envelope of the re-
sulting distributions at the different scales.

3.1. Results

Within our framework, we find the following total cross
sections for the process pp → Hjj in gluon fusion:

σLO[pb] = 1.90+0.58
−0.41 ,

σNLO[pb] = 2.90+0.05
−0.20 ,

where the error is obtained by varying the renormalization
and factorization scales as given in Eq. (9). The LO distri-
butions have been computed using 2.5 × 107 phase space
points, whereas all NLO distributions have been obtained
using 4.0×106 phase space points for the Born and the vir-
tual corrections and 5.0× 108 points for the real radiation
for each scale.

In Figs. 1 and 2, we present the distribution of the trans-
verse momentum pT of the Higgs boson and its pseudora-
pidity η, respectively. Both of them show a K-factor be-
tween the LO and the NLO distribution of about 1.5−1.6,
which is almost flat over a large fraction of kinematical
range. Furthermore both plots show a decrease of the scale
uncertainty of about 50%. Figures 3 and 4 display the
transverse momentum of the first and second jet, whereas
their pseudorapidities are shown in Figs. 5 and 6. The
previous considerations are also true for these latter plots.
For the transverse momentum distributions, however, we
observe a slight change of shapes. In the case of the lead-
ing jet, increasing the pT , the K-factor decreases from 1.6
to 1.4; while for the second leading jet, it increases from
1.4 to 1.6.

4. Virtual corrections to pp → Hjjj

We explore the possibility of extending our framework
to the production of a Higgs boson plus three jets at NLO.

The independent partonic processes contributing to
Hjjj can be obtained by adding one extra gluon to the
final state of the processes listed in Eq.(4). Accordingly,
we generate the codes for the virtual corrections to the
partonic processes with a quark-pair in the final state,

gg → Hqq̄g , qq̄ → Hqq̄g , qq̄ → Hq′q̄′g . (11)

The missing channel gg → Hggg, together with the phase
space integration, will be discussed in a successive study.

-50

 0

 50

 100

 0  1  2  3  4  5  6

a 0

Angle θ around y-axis

g g -> H q  -q  g

-50

 0

 50

 100

 0  1  2  3  4  5  6

a 0

Angle θ around y-axis

g g -> H q  -q  g
q -q -> H q  -q  g

-50

 0

 50

 100

 0  1  2  3  4  5  6

a 0

Angle θ around y-axis

g g -> H q  -q  g
q -q -> H q  -q  g
q -q -> H q’ -q’ g

Figure 7: Finite-term of the virtual matrix-elements for gg → Hqq̄g
(red), qq̄ → Hqq̄g (green), qq̄ → Hq′ q̄′g (blue).

We compute, for the first time, the virtual matrix ele-
ments for the three subprocesses listed above, and show
their results along a certain one-dimensional curve in the
space of final state momenta. We take the initial partons
to have momentum p1 and p2, whose 3-momenta lie along
the z-axis, and choose an arbitrary point for the final state
momenta {p3, p4, p5, p6}. For simplicity, we start with the
same phase space point used in the Appendix D (see Ta-
ble D.4). Then, we create new momentum configurations
by rotating the final state through an angle θ about the
y-axis. Figure 7 displays the behavior of the finite part a0

of the individual 2 → 4 amplitudes defined as

2Re {Mtree-level∗Mone-loop}
(4παs) |Mtree-level|2

≡ a−2

ε2
+

a−1

ε
+ a0 , (12)

when the final external momenta are rotated from θ = 0
to θ = 2π. The plots are obtained by sampling over 100
points.

Numerical values for the one-loop amplitudes of the pro-
cesses listed in (11) are collected in Appendix D.

Also in this case we verify that the values of the dou-
ble and the single poles conform to the universal singu-
lar behavior of dimensionally regulated one-loop ampli-
tudes [55].

5. Conclusions

We presented the calculation of the associated produc-
tion of a Higgs boson and two jets, pp → Hjj, at NLO in
QCD, employing the infinite top-mass approximation.

The results were obtained by using a fully automated
framework for fixed order NLO QCD calculations based
on the interplay of the packages GoSam and Sherpa, in-
terfaced through the BLHA standards. We discussed the
technical aspects of the computation, and showed the nu-
merical impact of the radiative corrections on the distribu-
tion of the transverse momentum of the Higgs boson and
its pseudorapidity, as well as of the transverse momentum
and pseudorapidity of the leading and second leading jet.
All plots show a K-factor between the LO and the NLO

5

while for n > 1 it can be proven by induction over n by
using

Gµ1µ2ε1···εn = G µ2ε1···εn−1
µ Gµ1µεn , (B.5)

that is

≡

ε1 ε2 εn

q
µ2 µ1

ε1 ε2 εn−1

µ2

µ
q

εn

µ1

µ

Combining Eq. (B.2) and Eq. (B.3), it is easy to realize
that each rank-(n + 2) term of an n + 1-denominator dia-
gram Γε1···εn is proportional to q2. The factor q2 simplifies
against one denominator leading to a rank n numerator of
an n-denominator integrand.

Appendix C. Benchmark points for pp → Hjj

In this appendix we provide numerical results for the
renormalized virtual contributions to the processes (4), in
correspondence with the phase space point in Table C.1.
The parameters can be read from Eqs. (6), while the renor-
malization and factorization scales are set to the Higgs
mass value. The assignment of the momenta proceeds as
follows

g(p1) g(p2) → H(p3) g(p4) g(p5) ,

g(p1) g(p2) → H(p3) q(p4) q̄(p5) ,

q(p1) q̄(p2) → H(p3) q(p4) q̄(p5) ,

q(p1) q̄(p2) → H(p3) q′(p4) q̄′(p5) . (C.1)

The results are collected in Table C.2 and are computed
using DRED. In the second column of the table we provide
the LO squared amplitude,

c0 ≡ |Mtree-level|2
(4παs)2g2

eff

, (C.2)

and the coefficients ai defined in Eq. (12). As a check
on the reconstruction of the renormalized poles, in the
last column we show the values of a−1 and a−2 obtained
by the universal singular behavior of the dimensionally
regularized one-loop amplitudes [55].

Appendix D. Benchmark points for pp → Hjjj

In this appendix we collect first numerical results for the
renormalized virtual contributions to

g(p1) g(p2) → H(p3) q(p4) q̄(p5) g(p6) ,

q(p1) q̄(p2) → H(p3) q(p4) q̄(p5) g(p6) ,

q(p1) q̄(p2) → H(p3) q′(p4) q̄′(p5) g(p6) . (D.1)

gg → Hgg

c0 0.1507218951429643 · 10−3

a0 59.8657965614009
a−1 −26.4694115468536 −26.46941154671207
a−2 −12.00000000000001 −12.00000000000000

gg → Hqq̄

c0 0.5677813961826772 · 10−6

a0 66.6635142370683
a−1 −16.5816633315627 −16.58166333155405
a−2 −8.66666666666669 −8.666666666666668

qq̄ → Hqq̄

c0 0.1099527895267439 · 10−5

a0 88.2959834057198
a−1 −10.9673755313443 −10.96737553134440
a−2 −5.33333333333332 −5.333333333333334

qq̄ → Hq′q̄′

c0 0.1011096724203529 · 10−6

a0 33.9521626734153
a−1 −13.8649292834138 −13.86492928341388
a−2 −5.33333333333334 −5.333333333333334

Table C.2: Numerical results for the processes listed in Eq. (C.1)

gg → Hqq̄g

b0 0.6309159660038877 · 10−4

a0 48.68424097859422
a−1 −36.08277727147958 −36.08277728199094
a−2 −11.66666666667209 −11.66666666666667

qq̄ → Hqq̄g

b0 0.3609139855530763 · 10−4

a0 69.32351140490162
a−1 −29.98862932963380 −29.98862932963629
a−2 −8.333333333333339 −8.333333333333334

qq̄ → Hq′q̄′g

b0 0.2687990772405433 · 10−5

a0 15.79262767177915
a−1 −32.35320587070861 −32.35320587073038
a−2 −8.333333333333398 −8.333333333333332

Table D.3: Numerical results for the processes listed in Eq. (D.1)

The results, collected in Table D.3, have been computed
using the parameters in Eqs. (6), with the renormalization
and factorization scales set to the Higgs mass value, and
choosing the phase space point given in Table D.4. In
particular, in the second column of Table D.3, we provide
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Summary

I Samurai extended to higher rank numerators⇒ can do
effective vertices

I Higgs plus two jets in gluon fusion has been calculated and
integrated

I Higgs plus three jets in production
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