### Pulse Shape Analysis A/E for GERDA experiment



#### **Outline**:

- Motivation
- Pulse Shape Discrimination for GERDA BEGes
- Systematic uncertainty on PSA
- > Outlook & Summary

Heng-Ye Liao



for the GERDA collaboration Max-Planck-Institut für Physik Symposium of the Sino-German GDT cooperation @ Tübingen, Deutschland, 10/04/2013



## **Neutrinoless Double Beta Decay**

- $2\nu\beta\beta$  decay:  $\Delta L=0$ (A,Z)  $\rightarrow$  (A,Z+2) +2e<sup>-</sup>+2 $\overline{\nu}$ SM allowed & observed
- **0**νββ decay: ΔL=2

   (A,Z) → (A,Z+2) +2e<sup>-</sup>
   if ν is Majorana particle
- ⇒ Use Detector made of ββ emitting material: HP <sup>76</sup>Ge detector



 $\mathbf{0}_{\nu\beta\beta}$  decay can help us learn more on:

- Nature of the neutrino (Majorana or Dirac?)
- Set the limits of absolute mass scale
   -> Mass hierarchy of neutrinos
- Information on CP violating phases

## Motivation

- GERDA: Searching for 0vββ decay
- Background recognition utilizing PSD method
- Define PSD parameters for SSE/MSE discrimination using <sup>228</sup>Th calibration source
- Event topology & event location distribution :
  - $0\nu\beta\beta \cong 2\nu\beta\beta$  except E dependence
  - Calibration ?= 2vββ
- Investigate systematic uncertainty due to event topology & event location on PSD
- The method: Comparison of PSD for 2vββ/calibration data

## **GERDA - Germanium Detector Array**



## **Pre-test mode for GERDA Phase-II**



- GERDA Phase-I using 6 coaxial <sup>enr</sup>Ge detectors
- Pre-test mode for Phase-II: Additional 5 enrBEGe detectors
- Advantages of BEGe detectors:
   ΔE < 3.0keV @ 2.6 MeV</li>
  - Powerful PSD: A/E parameter
- Total mass of <sup>enr</sup>BEGe detectors:
   3.6 kg
- Data taking: Since July, 2012
- Exposure:
  - 2vββ: 0.59 kg·yr

## A/E : Pulse Shape Discrimination Method



Use "Ratio of Maximum Amplitude to Energy" for discriminating SSE/MSE

## **Determination of PSD cut**



- Cut value is determined by using <sup>228</sup>Th source
- SSE/MSE are located in/below a horizontal band
- Double escape peak (DEP) from the <sup>208</sup>TI-line
   @ 2614.5 keV are mostly SSE
- Full energy peaks (FEP) contain large fraction of MSE
- Acceptance in DEP usually set to 90%



### Determination of cut values is happy <sup>©</sup> however ....

#### Don't forget the systematic uncertainty on your PSD method!!

#### An example of systematic effect on PSD:



8

## A/E-versus-E for 2vββ/calibration data



### **SSE for calibration data**



### SSE for 2vßß data



## **Consistency check for two methods**



## A/E Resolution as function of Energy



## **Outlook & Summary**

- PSD can reduce background & improve sensitivity for 0vββ experiments
- A/E for BEGes provides powerful SSE/MSE pulse shape recognition efficiency
- Systematic uncertainty is crucial for determining the cut value of PSD
- Deviations between methods dominated by statistical uncertainties
- Possible improvement in recognition eff.
   of SSE/MSE by A/E(E)

# **Backup Slides**

#### **Neutrinoless Double Beta Decay**

- Nature of the neutrino (Majorana or Dirac?)
- Set the limits of absolute mass scale
  - -> Mass hierarchy of neutrinos
- Information on CP violating phases
- The observable: <u>half life</u>



One measurement, many answers (or questions)...

#### **Experimental Challenge**

## ~ 30 isotopes are available, but ...



## Why HP <sup>76</sup>Ge detector ?

- High detection efficiency (source=detector)
- Very good energy resolution (0.2% in ROI)
- Very low intrinsic background

## **GERDA: Phases & Goals**



 Phase I – Test claim, 15 kg-yr
 Phase II – Improve limits on T<sub>1/2</sub>, 100 kg-yr, additional 30 enriched BEGe detectors(20kg)